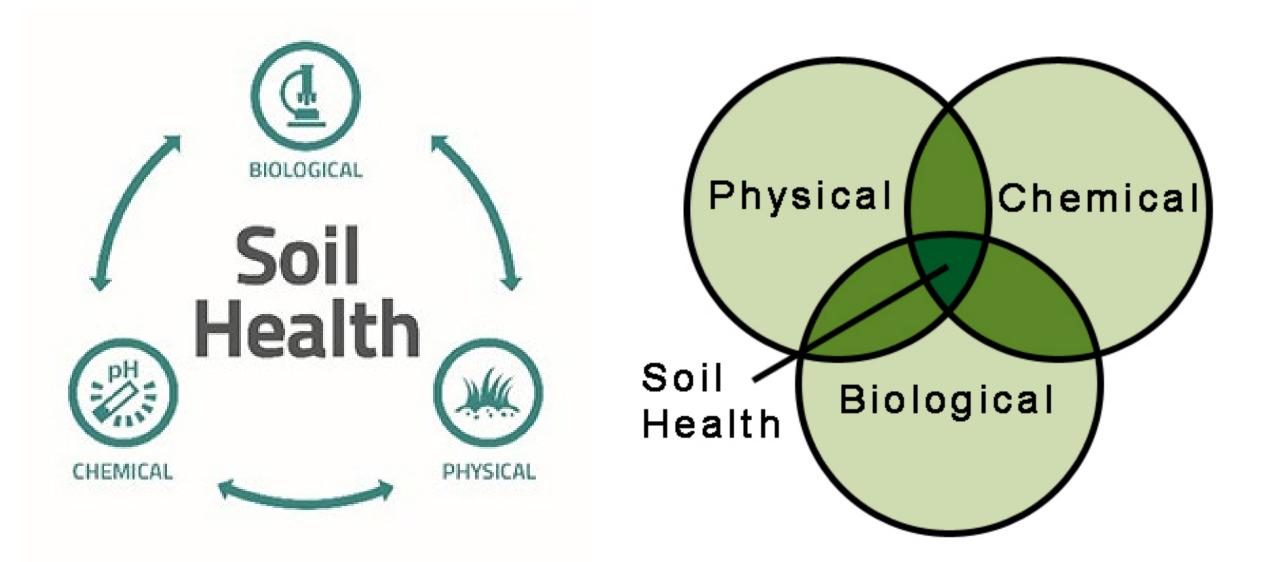
Soil Health – What's Old, What's New, and How Does it Relate to Cover Cropping?

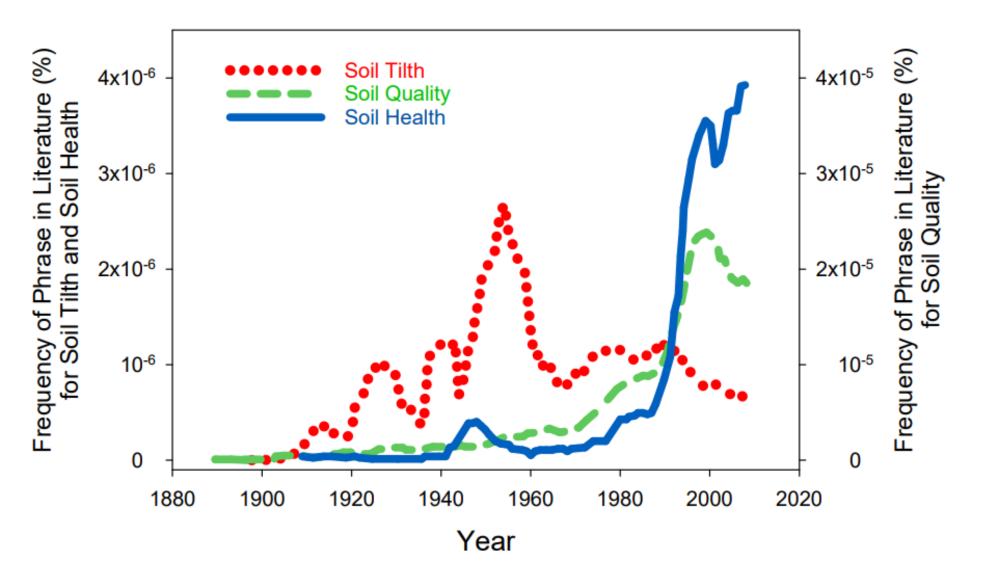
Midwest Cover Crop Conference 21 Feb 2019

Andrew Margenot Assistant Professor of Soil Science

https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/soils/health/

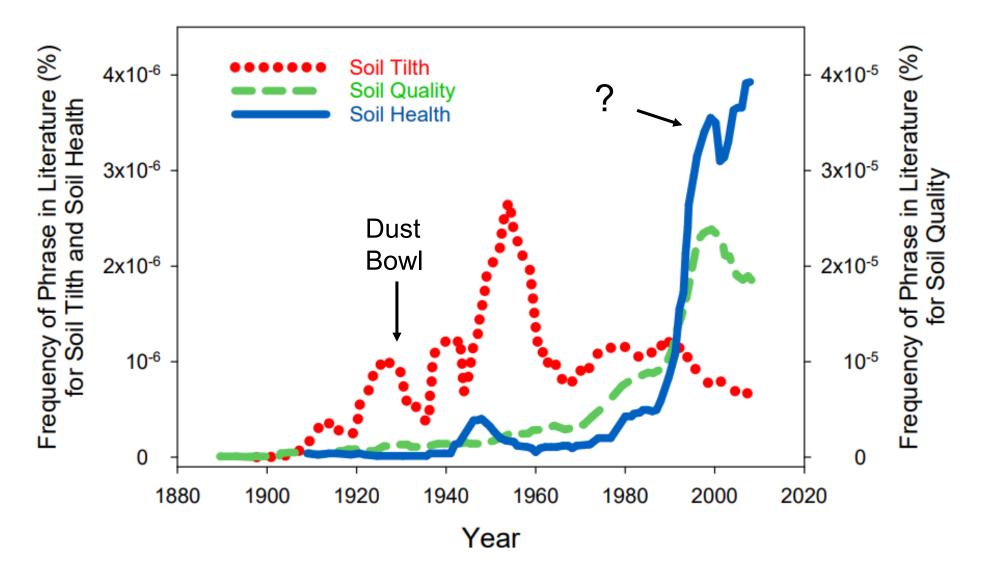

NRCS Definition of Soil Health

"The continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans"


"This definition speaks to the importance of managing soils so they are sustainable for future generations"

"To do this, we need to remember that soil contains living organisms that when provided the basic necessities of life - food, shelter, and water - perform functions required to produce food and fiber"

Conceptualizations of soil health



Re-inventing the wheel?

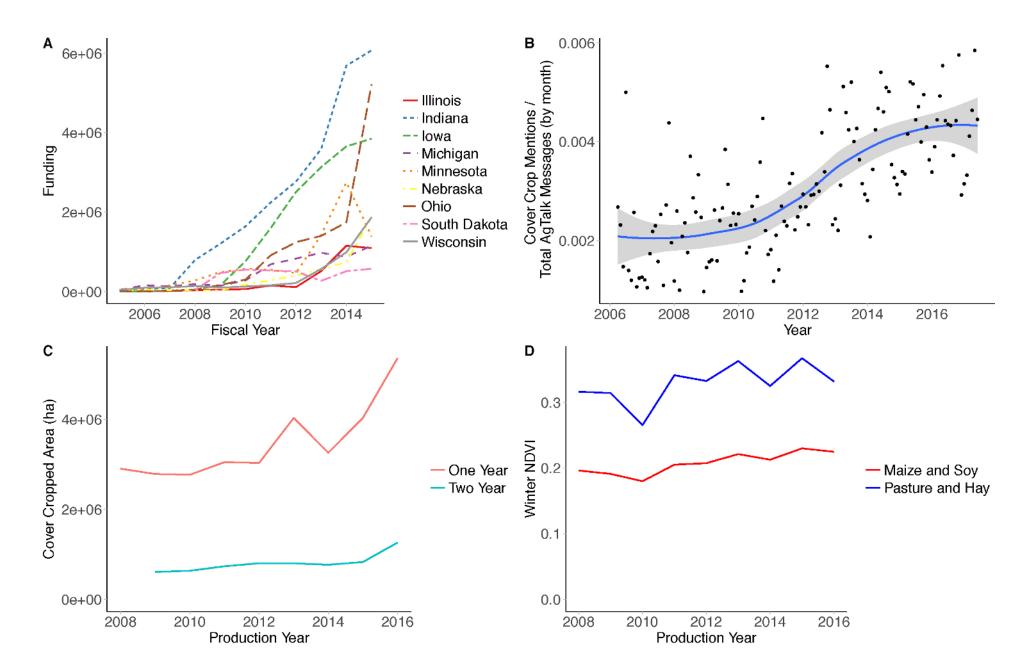
McDaniel, 2017. Integrated Crop Management Conference. Iowa State University

"Biology" distinguishes Soil Quality vs Health

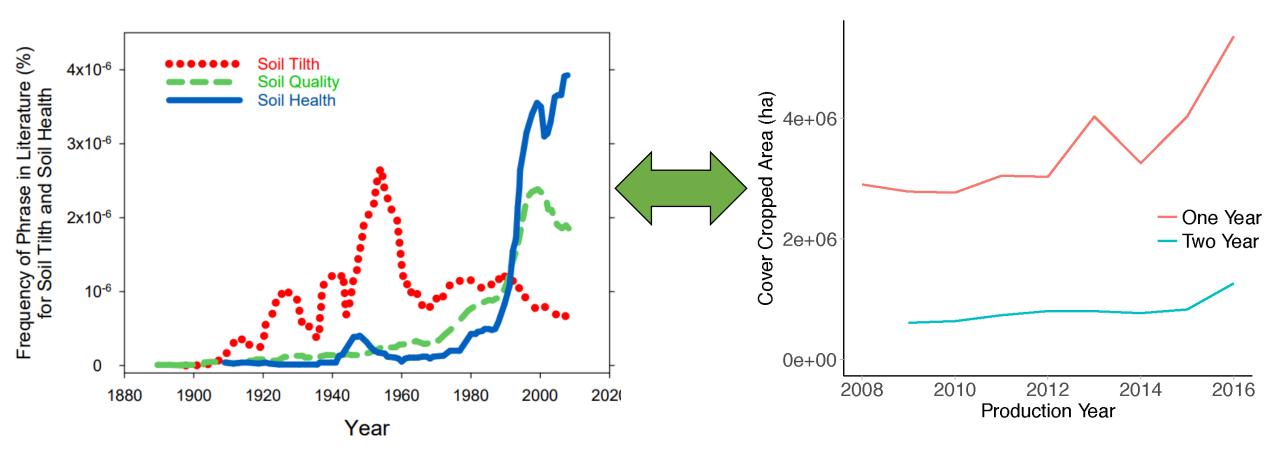
McDaniel, 2017. Integrated Crop Management Conference. Iowa State University

Published January, 1938

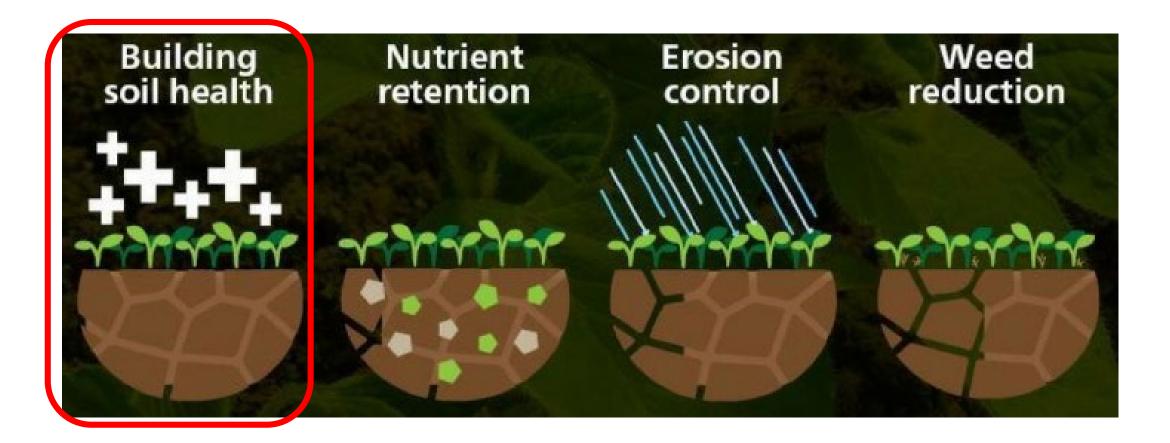
22 JOURNAL OF THE AMERICAN SOCIETY OF AGRONOMY


THE VALUE OF COVER CROPS IN CONTINUOUS CORN CULTURE¹

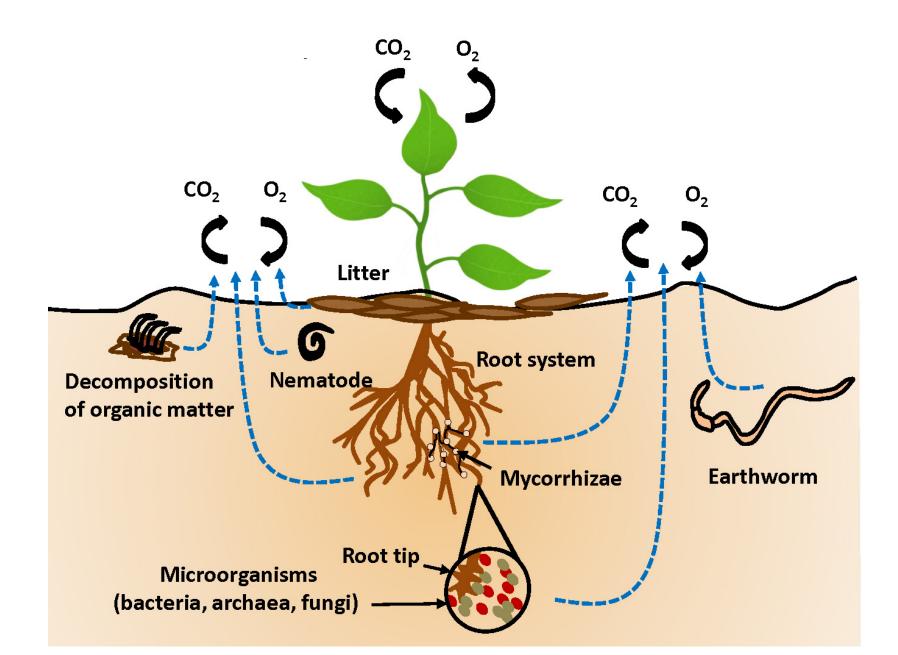
T. E. Odland and H. C. Knoblauch²

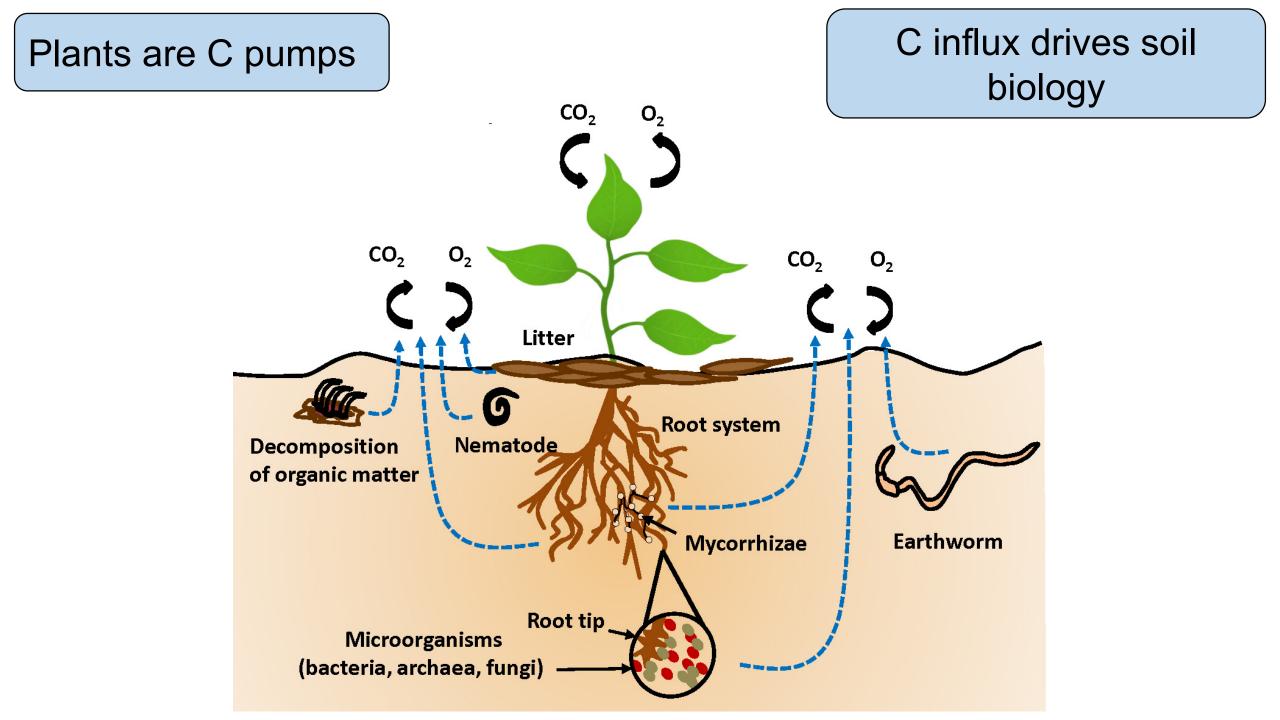

THE use of cover crops for the purpose of conserving soil fertility, whenever possible, is becoming a general practice on the better managed farms in Rhode Island as well as in many other localities. Specific evidence on the value of such practice over a considerable period of time is, however, not so plentiful. Results obtained with nonlegume cover crops have sometimes been contradictory. The purpose of this paper is to present some results from a long-continued experiment with rye and clover cover crops in continuous corn culture at the Rhode Island Agricultural Experiment Station.

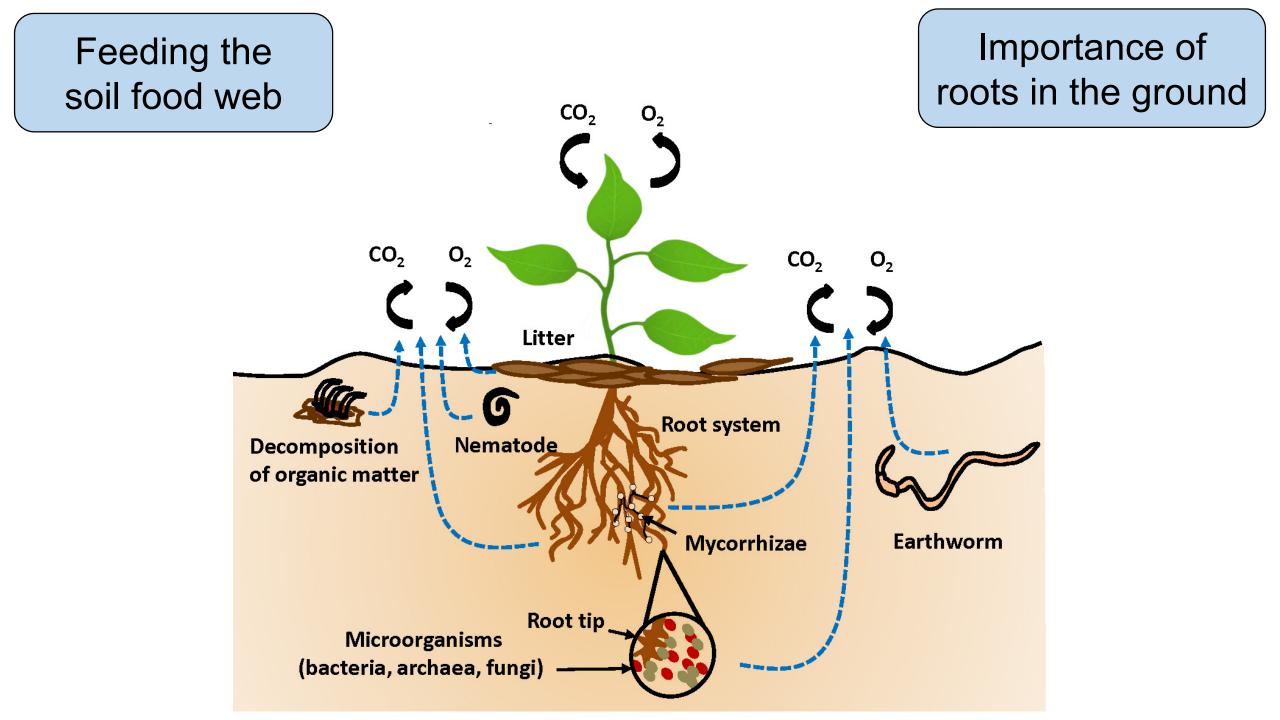
"The practice of using cover crops for conserving soil productivity is a highly desirable practice and should be encouraged"


Support for and use of cover crops is increasing

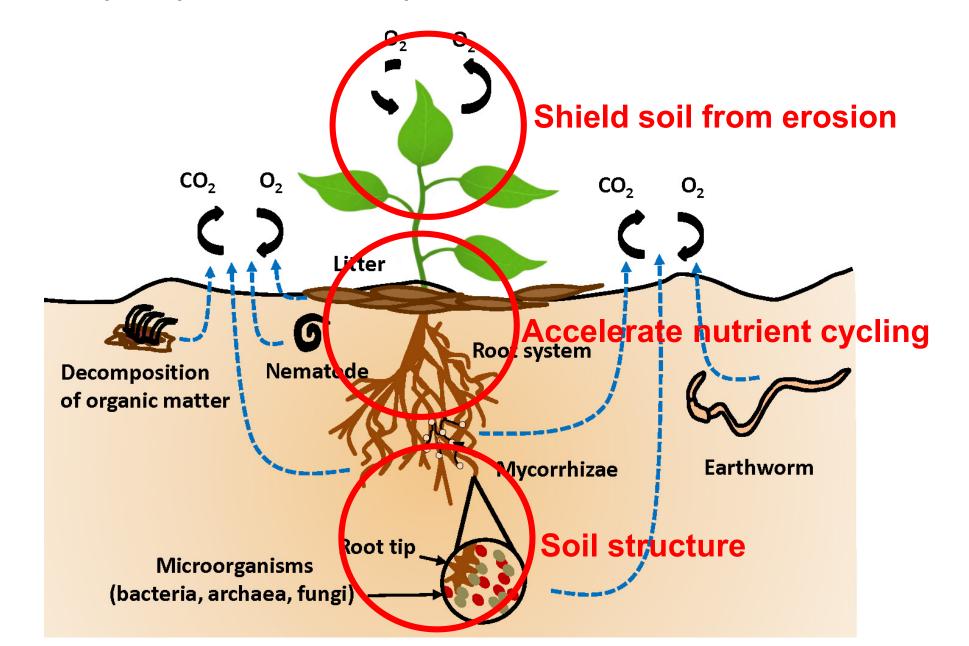
Co-rise of "soil health" and cover cropping


Cover crops directly and indirectly influence soil health




How do cover crops factor in soil health?

USDA Natural Resources Conservation Service (NRCS) has identified four basic principles for maintaining and improving soil health:


- 1. Keep the soil covered as much as possible \checkmark
- 2. Disturb the soil as little as possible \checkmark
- 3. Keep plants growing throughout the year to feed the soil V
- 4. Diversify crop rotations as much as possible 🗸

The carbon pump of cover crops also comes with a drill and shield

Underlying 'engineering' functions of cover crops

C input: Augment base of the trophic chain
 Build and fortify soil structure
 Erosion control: Protect the soil investment

Cover crops are a solar panel-powered carbon pump for the soil food web

- Flow of energy through cells facilitated by net C influx from atmosphere to soil
- Measurable indicators target specific aspects of soil biology address how this C flows through soil:
 - Who
 - What they're eating
 - How they're eating
- Tier 1 and Tier 2 biological soil health indicators identified by Soil Health Institute
 - Active area of research

Cornell Soil Health Assessment					
Agricultural Service Provider: None Cedar Basin Crop Consulting			Sample ID: Field/Treatmen Tillage: Crops Crown: Date Sampled: Given Soil Tyj Given Soil Tey Coordinates:	1-7 inches COG, COG, SOY 12:00:00 AM	
М	leasured Soil Textural Class: Silt	Loam	Sand	l: 28% Silt: 56% Clay: 16%	
		Test	Report	t	
Indicator Value			Rating	Constraint	
	Available Water Capacity	0.31	100		
cal	Surface Hardness			Not Rated: No Field Penetrometer Readings Submitted	
Physical	Subsurface Hardness			Not Rated: No Field Penetrometer Readings Submitted	
4	Aggregate Stability	49.5	78		
	Organic Matter	4.6	79		
cal	ACE Soil Protein Index	5.8	29	Organic Matter Quality, Organic N Storage, N Mineralization	
Biological	Root Pathogen Pressure	4.7	54		
B	Respiration	0.58	4	Soil Microbial Abundance and Activity	
	Active Carbon	744	76		
a	pH	6.0	66		
Chemical	Phosphorus	10.9	100		
	Potassium	164.5	100		
	Minor Elements Mg: 456 Fe: 0.8 Mm: 9.2 Zn: 0.4		100		
	Overall Quality Score			High	

SOIL FERTILITY & HEALTH REPORT

Client William Brinton Woods End Farm 290 Belgrade Rd. Mt Vernon, ME C	P.O. Box 297		Sample Identity: Acct Number: Sample: Soil: Italy:	9529.3 100 Lower Vineyard	Casa Maria 4		
United States			Sample Date: Intended Crop:	8/19/2015 Grapes @			
olvita Soil Health Factors	RANKING:		Nutrients Value per he	ctare available			
olvita - CO2 Burst	90 Medium		N + P2O5 +	N + P2O5 + K2O hectare =			
olvita - SLAN, amino-N	48 Low		Nutrients Availa	ble kg/ha			
ggregate Stability	35 Medium		N P2O5	К2О			
Organic Matter	3.2 Medium		115 229	210			
			NUTR	NUTRIENT FERTILITY			
			Analysis	Units	Level Found		
			Nitrate-N 0-6"	ppm	10		
0		100	Additonal Nitrate-N	ppm	nt		
	67		Ammonium-N 0-6"	ppm	nt		
	Profile Avail-N	ppm	10				
	FERTILITY SCO	DC	Biological N-Min kg/ha		97		
OVERALL	N-Estimated For Crops		103				
			Phosphate as P	ppm	45		
			Potassium as K	ppm	78		
			Calcium	ppm	480		
	\backslash		Magnesium	ppm	153		
			Sodium	ppm	37		
			pН	Units	6.3		
0		50	EC	dS M	nt		
	17						
	1/		Nutrient Index	Rating	1.00		
SOIL H	EALTH SCORE		Most Limiting Factor		None		
301211				ther factors			
			Water Soluble Carbon	ppm	204		
Notes and Recommendations USDA Cover Crop Recommendations Types of Cover Crop Blends Suggested:			Water Soluble-N	ppm	16		
			Soluble C:N Ratio Unit Aluminum, Extractable ppm		12.8		
					135		
20% Legume 80%	6 Grass/Non-legume		P-Saturation	ratio	14%		
			Iron, Extractable	ppm	186		
	ns/Recommendations	_	1				
Nutrient Required (estimated) per hectare kg			Nutrient Deficit (by difference)				
56	17 84 (N-P	- K)	0 0	0	(N-P-K)		

Notes on the Report: Soil Hea

Soil Health Score integrates: Respiration, Amino-N, Aggregate Stability and Organic Matter Overall Fertility integrates Health Score and N-min + relative P & K

	Cornell S	oil H	ealth A	ssessment	
Agricultural Service Provider: None Cedar Basin Crop Consulting cbcc@earthlink.net			Sample ID: L_555 Field/Treatment: Tenge E Tillage: 1-7 inches Crops Crown: COG, COG, SOY Date Sampled: 12:00:00 AM Given Soil Type: Muscatine Given Soil Texture: Silty Clay Loam Coordinates:		
М	leasured Soil Textural Class: Silt	Loam	Sand	l: 28% Silt: 56% Clay: 16%	
		Test	Report	t	
Indicator Value			Rating	Constraint	
	Available Water Capacity	0.31	100		
cal	Surface Hardness			Not Rated: No Field Penetrometer Reading: Submitted	
Physical	Subsurface Hardness			Not Rated: No Field Penetrometer Reading: Submitted	
P	Aggregate Stability	49.5	78		
	Organic Matter	4.6	79		
cal	ACE Soil Protein Index	5.8	29	Organic Matter Quality, Organic N Storage N Mineralization	
Biological	Root Pathogen Pressure	4.7	54		
Bi	Respiration	0.58	4	Soil Microbial Abundance and Activity	
	Active Carbon	744	76		
-	pH	6.0	66		
Chemical	Phosphorus	10.9	100		
	Potassium	164.5	100		
	Minor Elements Mg: 456 Fe: 0.8 Ma: 9.2 Za: 0.4		100		
Overall Quality Score			71	High	

SOIL FERTILITY & HEALTH REDORT

Laboratories	SOIL F	ERT	ILITY & I	HEALTH	REPOR	RT	
Client William Brint				Sample Io	1989	9529.3	
Woods End F				Acct Num		100	
	Rd. P.O. Box 2	297		Sample:	Soil: Italy: Low	ver Vineyard	Casa Maria 4
Mt Vernon, N United States			ľ	Sample D	ate:	8/19/2015	5
				Intended		Grapes @	5 t/a
Solvita Soil Health Factors	s R	ANKING		Nutrients	Value per hecta	are available	
Solvita - CO2 Burst	90 0	Medium			N + P2O5 + K2O hectare = \$221.78		
solvita - SLAN, amino-N	48	Low		Nut	Nutrients Available		
Aggregate Stability	35 1	Vedium		N	P2O5	K2O	
Organic Matter	3.2	Vedium		115	229	210	
		1			NUTRIE	NT FERTI	LITY
		/		Analysis		Units	Level Found
				Nitrate-N	0-6"	ppm	10
0			100) Additonal	Nitrate-N	ppm	nt
	67			Ammoniu	m-N 0-6"	ppm	nt
67			Profile Ava	Profile Avail-N		10	
	L FERTIL	ITV	CODE	Biological	Biological N-Min kg/l		97
OVERAL		_ Y .	SCORE	N-Estimate	ed For Crops		103
				Phosphate	as P	ppm	45
				Potassium	as K	ppm	78
	1			Calcium			480
				Magnesiur	Magnesium		153
				Sodium	Sodium		37
				pH	рН		6.3
0			50	EC		dS M	nt
	17						
	17			Nutrient Ir	ndex	Rating	1.00
COL	HEALTH			Most Limit	Most Limiting Factor		None
SOIL	HEALIH	SCL	JRE		Other factors		
				Water Solu	uble Carbon	ppm	204
Notes and Recommendations			Water Solu	Water Soluble-N		16	
USDA Cover Crop Recommendations			Soluble C:	Soluble C:N Ratio		12.8	
Types of Cover Crop Blends Suggested:			Aluminum	Aluminum, Extractable pp		135	
20% Legume 80% Grass/Non-legume			P-Saturatio	P-Saturation		14%	
			Iron, Extra	Iron, Extractable ppm		186	
Nutrient Limit	ations/Recomm	endatio	ns				
Nutrient Requi	ired (estimated)	per hect	are kg	Nutrient D	eficit (by differ	ence)	
56	17	84	(N - P - K)	0	0	0	(N - P - K)

Notes on the Report:

Soil Health Score integrates: Respiration, Amino-N, Aggregate Stability and Organic Matter Overall Fertility integrates Health Score and N-min + relative P & K

Soil health indicators: quantifiable measures

19 endorsed indicators (Tier 1 and 2)

Physical	Chemical	Biological
Water-stable aggregation	Organic carbon	Carbon mineralization
Texture	рН	Nitrogen mineralization
Penetration resistance	Cation exchange capacity	Crop yield
Erosion rating	Electrical conductivity	
Bulk density	Base saturation	
Available water holding capacity	Plant available nutrients (e.g. N, P, K)	
Infiltration rate	Micronutrients	

Notice of Recommended Standard Methods for Use as Soil Health Indicator Measurements

Notice

A Notice by the Natural Resources Conservation Service on 09/14/2018

PUBLISHED DOCUMENT DOCUMENT DETAILS Start Printed Page 46703 := Printed version: PDF AGENCY: Publication Date: Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture 09/14/2018 (USDA). Agencies: Natural Resources Conservation Service ACTION: Dates: Notice of availability of proposed technical note "Recommended Soil Health Applicable Date: This is Applicable September 14, 2018. Ū Indicators and Associated Laboratory Procedures" for public review and Document Type: comment. Notice Document Citation: SUMMARY: 83 FR 46703 \mathbf{b} Notice is hereby given of the intention of NRCS to issue a technical note on a Page: group of recommended standard methods for soil health indicators selected by a 46703 (1 page)

https://www.federalregister.gov/documents/2018/09/14/2018-19985/notice-of-recommended-standard-methods-for-use-as-soil-health-indicator-measurements

DEPARTMENT OF AGRICULTURE

Natural Resources Conservation Service

[Docket No. NRCS-2018-0006]

Notice of Recommended Standard Methods for Use as Soil Health Indicator Measurements

AGENCY: Natural Resources Conservation Service (NRCS), U.S. Department of Agriculture (USDA). ACTION: Notice of availability of proposed technical note "Recommended Soil Health Indicators and Associated Laboratory Procedures" for public review and comment.

SUMMARY: Notice is hereby given of the intention of NRCS to issue a technical note on a group of recommended standard methods for soil health indicators selected by a collaborative multi-organizational effort, as described in the document. USDA/NRCS and partner efforts to assess soil health problems and impacts of management nationally, as part of conservation planning and implementation, will be facilitated if soil health indicators are measured using a standard set of methods. Soil health is defined as the capacity of the soil to function as a vital living ecosystem to sustain plants, animals, and humans. Six key soil physical and biological processes were

and Sasser 2012). Standard operating procedures to be used in laboratories have been provided in the appendices. DATES:

Applicable Date: This is Applicable September 14, 2018.

Comment Date: Submit comments on or before December 13, 2018. A final version of this technical note will be published after the close of the 90-day period and after consideration of all comments.

ADDRESSES:

Obtaining Documents: You may download the draft Technical Note at https://go.usa.gov/xUFJE.

Comments should be submitted, identified by Docket Number NRCS– 2018–0006, using any of the following methods:

 Federal eRulemaking Portal: http:// www.regulations.gov. Follow the instructions for submitting comments.

 Mail or hand-delivery: Public Comments Processing, Attention: Regulatory and Agency Policy Team, Strategic Planning and Accountability, Natural Resources Conservation Service, 5601 Sunnyside Avenue, Building 1– 1112D, Beltsville, Maryland 20705.

NRCS will post all comments on http://www.regulations.gov. In general, personal information provided with comments will be posted. If your comment includes your address, phone number, email, or other personal

DEPARTMENT OF COMMERCE

Bureau of Industry and Security

Proposed Information Collection; Comment Request; License Transfer and Duplicate License Services

AGENCY: Bureau of Industry and Security (BIS), Commerce. ACTION: Notice.

SUMMARY: The Department of Commerce, as part of its continuing effort to reduce paperwork and respondent burden, invites the general public and other Federal agencies to take this opportunity to comment on proposed and/or continuing information collections, as required by the Paperwork Reduction Act of 1995.

DATES: To ensure consideration, written comments must be submitted on or before November 13, 2018.

ADDRESSES: Direct all written comments to Jennifer Jessup, Departmental Paperwork Clearance Officer, Department of Commerce, 1401 Constitution Avenue NW, Room 6616, Washington, DC 20230 (or via the internet at *docpra@doc.gov.*)

FOR FURTHER INFORMATION CONTACT: Requests for additional information or copies of the information collection instrument and instructions should be directed to Mark Crace, BIS ICB Liaison, (202) 482–8093 or at mark.crace@

Federal Register / Vol. 83, No. 179 / Friday, September 14, 2018 / Notices

46703

DEPARTMENT OF AGRICULTURE and Sasser 2012). Standard operating DEPARTMENT OF COMMERCE

Six key soil physical and biological processes were identified that must function well in a healthy soil, and therefore would especially benefit from measurement methods standardization: (1) Organic matter dynamics and carbon sequestration, (2) soil structural stability, (3) general microbial activity, (4) C food source, (5) bioavailable N, and (6) microbial community diversity. The chosen methods met several criteria including indicator effectiveness with respect to management sensitivity and process interpretability, ease of use, cost effectiveness, measurement repeatability, and ability to be used for agricultural management decisions. The soil health indicator methods included are soil organic carbon, water-stable aggregation, short-term mineralizable carbon, four enzymes: β glucosidase, N-acetyl- β -D-glucosaminidase, acid or alkaline phosphatase, and arylsulfatase, permanganate oxidizable carbon, autoclaved citrate extractable (ACE) protein, and phospholipid fatty acid analysis. Standard operating procedures to be used in laboratories have been provided in the appendices.

> facilitated if soil health indicators are measured using a standard set of methods. Soil health is defined as the capacity of the soil to function as a vital living ecosystem to sustain plants, animals, and humans. Six key soil physical and biological processes were

1112D, Beltsville, Maryland 20705. NRCS will post all comments on http://www.regulations.gov. In general, personal information provided with comments will be posted. If your comment includes your address, phone number, email, or other personal

5601 Sunnyside Avenue, Building 1-

internet at *docpra@doc.gov.*) FOR FURTHER INFORMATION CONTACT: Requests for additional information or copies of the information collection instrument and instructions should be directed to Mark Crace, BIS ICB Liaison, (202) 482–8093 or at *mark.crace@*

Federal Register / Vol. 83, No. 179 / Friday, September 14, 2018 / Notices

46703

DEPARTMENT OF AGRICULTURE and Sasser 2012). Standard operating DEPARTMENT OF COMMERCE Six key soil physical and biological processes were identified that must function well in a healthy soil, and therefore would especially benefit from measurement methods standardization: (1) Organic matter dynamics and carbon sequestration, (2) soil structural stability, (3) general microbial activity, (4) C food source, (5) bioavailable N, and (6) microbial community diversity. The chosen methods met several criteria including indicator effectiveness with respect to management sensitivity and process interpretability, ease of use, cost effectiveness, measurement repeatability, and ability to be used for agricultural management decisions. The soil health indicator methods included are soil organic carbon, water-stable aggregation, short-term mineralizable carbon, four enzymes: βglucosidase, N-acetyl- β -D-glucosaminidase, acid or alkaline phosphatase, and arylsulfatase, permanganate oxidizable carbon, autoclaved citrate extractable (ACE) protein, and phospholipid fatty acid analysis. Standard operating procedures to be used in laboratories have been provided in the appendices.

facilitated if soil health indicators are measured using a standard set of methods. Soil health is defined as the capacity of the soil to function as a vital living ecosystem to sustain plants, animals, and humans. Six key soil physical and biological processes were

1112D, Beltsville, Maryland 20705. NRCS will post all comments on http://www.regulations.gov. In general, personal information provided with comments will be posted. If your comment includes your address, phone number, email, or other personal internet at *docpra@doc.gov.*) **FOR FURTHER INFORMATION CONTACT:** Requests for additional information or copies of the information collection instrument and instructions should be directed to Mark Crace, BIS ICB Liaison, (202) 482–8093 or at *mark.crace@*

Federal Register / Vol. 83, No. 179 / Friday, September 14, 2018 / Notices

46703

DEPARTMENT OF AGRICULTURE and Sasser 2012). Standard operating DEPARTMENT OF COMMERCE

Six key soil physical and biological processes were identified that must function well in a healthy soil, and therefore would especially benefit from measurement methods standardization: (1) Organic matter dynamics and carbon sequestration, (2) soil structural stability, (3) general microbial activity, (4) **C food source**, (5) bioavailable N, and (6) microbial community diversity. The chosen methods met several criteria including indicator effectiveness with respect to management sensitivity and process interpretability, ease of use, cost effectiveness. The soil health indicator methods included are soil organic carbon, water-stable aggregation, short-term mineralizable carbon, four enzymes: β glucosidase, N-acetyl- β -D-glucosaminidase, acid or alkaline phosphatase, and arylsulfatase, permanganate oxidizable carbon, autoclaved citrate extractable (ACE) protein, and phospholipid fatty acid analysis. Standard operating procedures to be used in laboratories have been provided in the appendices.

> facilitated if soil health indicators are measured using a standard set of methods. Soil health is defined as the capacity of the soil to function as a vital living ecosystem to sustain plants, animals, and humans. Six key soil physical and biological processes were

1112D, Beltsville, Maryland 20705. NRCS will post all comments on http://www.regulations.gov. In general, personal information provided with comments will be posted. If your comment includes your address, phone number, email, or other personal

5601 Sunnyside Avenue, Building 1-

internet at *docpra@doc.gov.*) **FOR FURTHER INFORMATION CONTACT:** Requests for additional information or copies of the information collection instrument and instructions should be directed to Mark Crace, BIS ICB Liaison, (202) 482–8093 or at *mark.crace@*

Biological process/property

Biological Indicator

(1) OM dynamics
(2) Soil structural stability
(3) General microbial activity
(4) C food source
(5) Bioavailable N
(6) Microbial community diversity

(1) TOC, mineralizable C
(2) water-stable aggregation
(3) enzyme activities
(4) labile carbon (POXC)
(5) ACE protein
(6) PLFA

TABLE 1. Tier 1 Soil Health Indicators and Methods to

Indicator

Soil pH

Soil Electrical Conductivity (EC)

Cation Exchange Capacity (CEC)

% Base Saturation (BS)

Extractable P

Extractable K, Ca, Mg, Na

Total Nitrogen Soil Organic Carbon (SOC) Soil Texture Aggregate Stability Available Water Holding Capacity Bulk Density (BD) Erosion Rating Soil Penetration Resistance Water Infiltration Rate Crop Yield

Short-Term Carbon Mineralization

Extractable Fe, Zn, Cu, Mn

- · Is widely considered an effective indicator of soil health;
- · Is defined regionally and by soil groupings across the nation;
- Has thresholds known to indicate (at minimum) "poor", "adequate", and "good" that are outcome-based (crop yield, environmental goals, etc.); and
- Is responsive to specific management strategies that can be recommended to improve soil functioning.

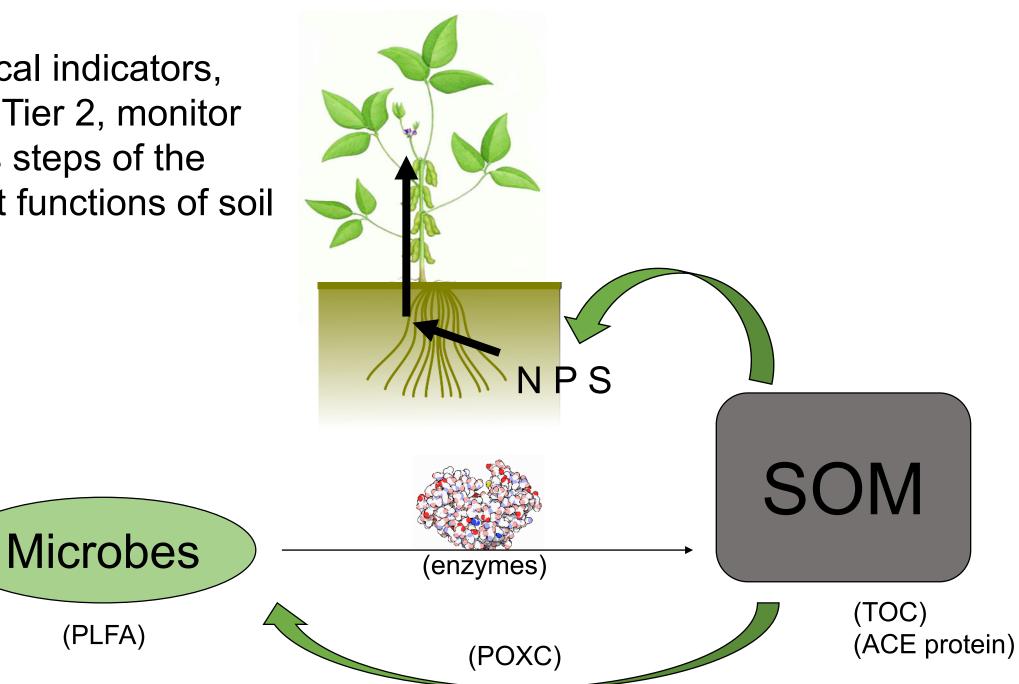
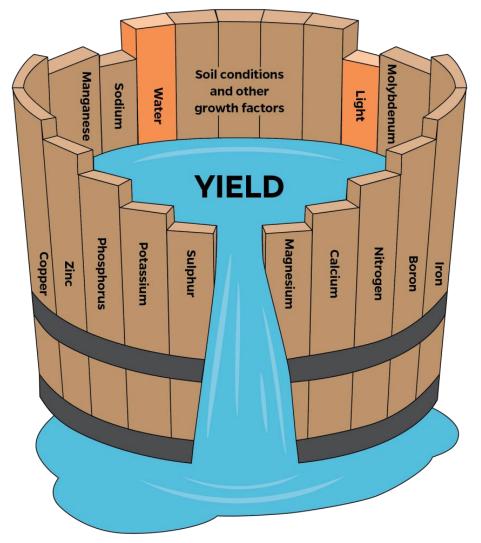

"A Tier 2 indicator **needs additional research** before users can have the same level of confidence in its measurement, use, and interpretation."

TABLE 2. Tier 2 Soil Health Indicators and Methods to be Assessed (updated 10/23/2018)					
Indicator	Method	Reference			
Sodium Adsorption Ratio (SAR)	Saturated paste extract followed by atomic absorption or inductively coupled plasma spectroscopy	Miller, et al., 2013			
Soil Stability Index	Combination of wet and dry sieving at multiple sieve sizes	Franzluebbers, et al., 2000			
Active Carbon	Permanganate oxidizable carbon (POXC). Digestion followed by colorimetric measurement	Weil, et al., 2003			
Soil Protein Index	Autoclaved Citrate Extractable	Schindelbeck, 2016			
B-Glucosidase	Assay incubation followed by colorimetric measurement	Tabatabai, et al., 1994			
B-Glucosaminidase	Assay incubation followed by colorimetric measurement	Deng and Popova, 2011			
Phosphatase	Assay incubation followed by colorimetric measurement	Acosta-Martinez and Tabatabai, 2011			
Arylsulfatase	Assay incubation followed by colorimetric measurement	Klose, et al., 2011			
Phospholipid Fatty Acid (PLFA)	Bligh-Dyer extractant, solid phase extraction, transesterification; gas chromatography	Buyer and Sasser, 2012			
Ester-Linked Fatty Acid Methyl Ester (EL-FAME)	Mild alkaline methanolysis extraction; gas chromatography	Schutter and Dick, 2000			
Genomics	18S, 16S or ITS analysis or a combination of 16S and 18S/ITS; and/or Shotgun metagenomics	Thompson, et al., 2017; Quice, et al., 2017			
Reflectance	Diffuse reflectance spectroscopy	Veum, et al., 2015			

Tier 2 indicators are largely biological

TABLE 2. Tier 2 Soil Health Indicators and Methods to be Assessed (updated 10/23/2018)					
Indicator	Method	Reference			
Sodium Adsorption Ratio (SAR)	Saturated paste extract followed by atomic absorption or inductively coupled plasma spectroscopy	Miller, et al., 2013			
Soil Stability Index	Combination of wet and dry sieving at multiple sieve sizes	Franzluebbers, et al., 2000			
Active Carbon	Permanganate oxidizable carbon (POXC). Digestion followed by colorimetric measurement	Weil, et al., 2003			
Soil Protein Index	Autoclaved Citrate Extractable	Schindelbeck, 2016			
B-Glucosidase	Assay incubation followed by colorimetric measurement	Tabatabai, et al., 1994			
B-Glucosaminidase	Assay incubation followed by colorimetric measurement	Deng and Popova, 2011			
Phosphatase	Assay incubation followed by colorimetric measurement	Acosta-Martinez and Tabatabai, 2011			
Arylsulfatase	Assay incubation followed by colorimetric measurement	Klose, et al., 2011			
Phospholipid Fatty Acid (PLFA)	Bligh-Dyer extractant, solid phase extraction, transesterification; gas chromatography	Buyer and Sasser, 2012			
Ester-Linked Fatty Acid Methyl Ester (EL-FAME)	Mild alkaline methanolysis extraction; gas chromatography	Schutter and Dick, 2000			
Genomics	18S, 16S or ITS analysis or a combination of 16S and 18S/ITS; and/or Shotgun metagenomics	Thompson, et al., 2017; Quice, et al., 2017			
Reflectance	Diffuse reflectance spectroscopy	Veum, et al., 2015			

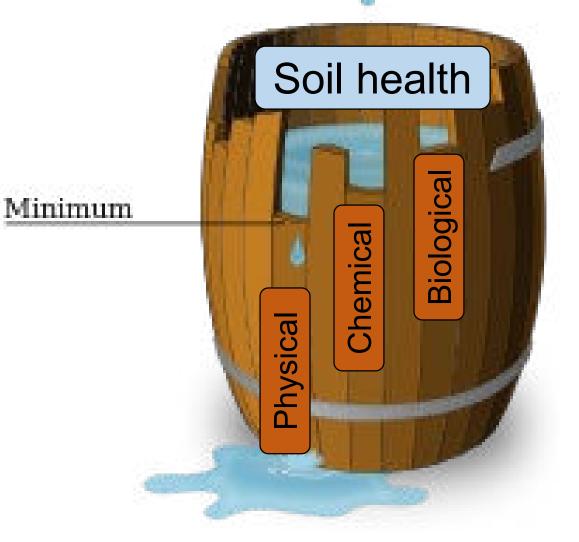
Biological indicators, largely Tier 2, monitor various steps of the nutrient functions of soil health


Underlying 'engineering' functions of CCs

Underlying 'engineering' functions of CCs

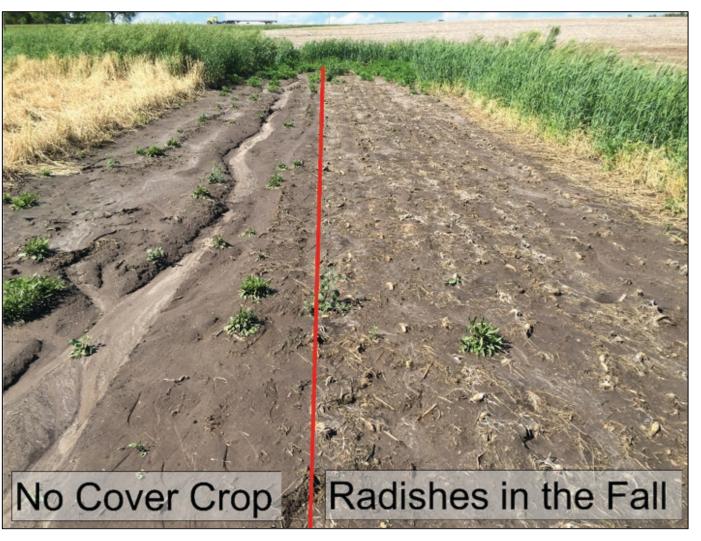
C input: Augment base of the trophic chain
 Build and fortify soil structure
 Erosion control: Protect the soil investment

"Physical health" component of soil health: overlooked?



Liebig's Law of the Minimum

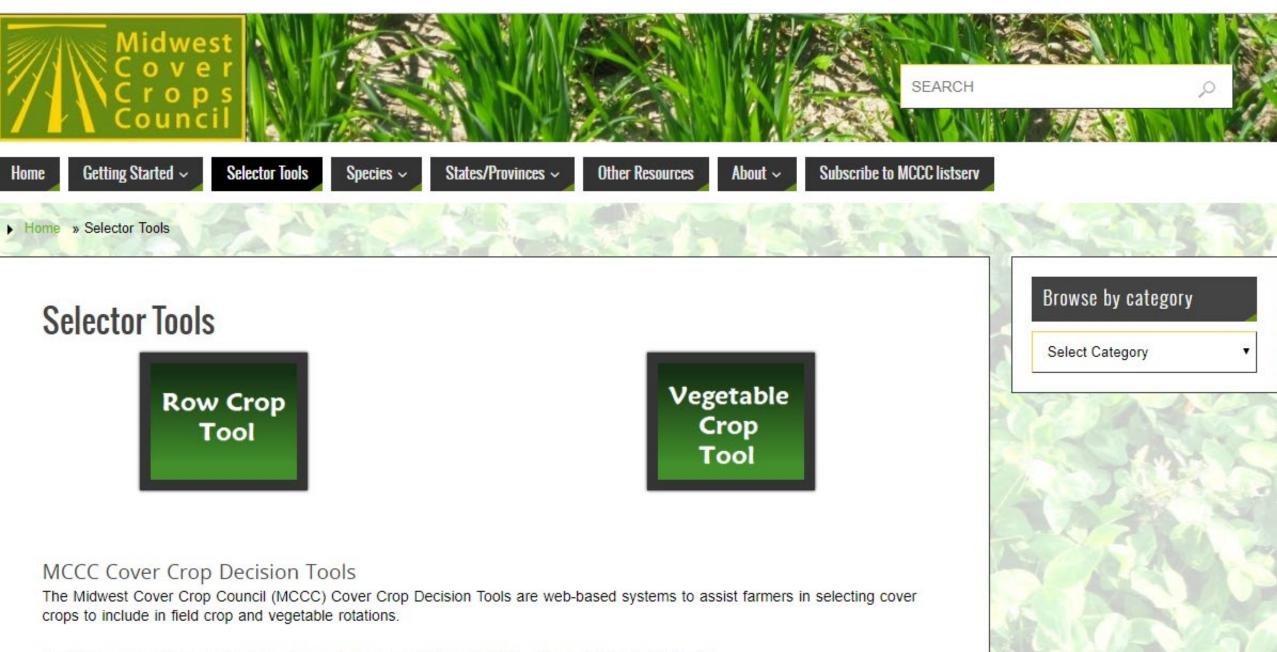
"Physical health" as a commonly limiting component of soil health



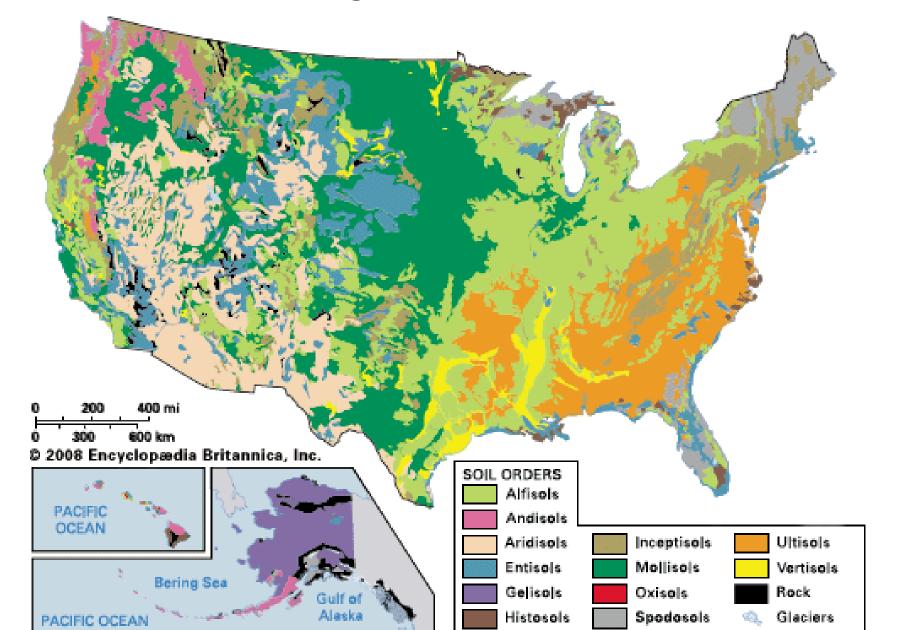
"Physical health" as an integrator and enabler variable

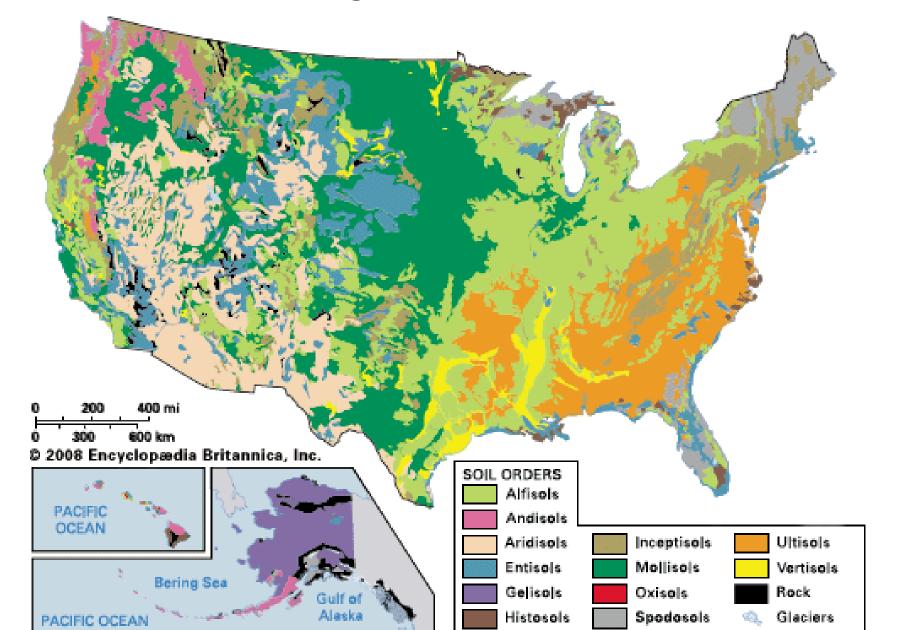
Integrate organo-mineral-biota interactions

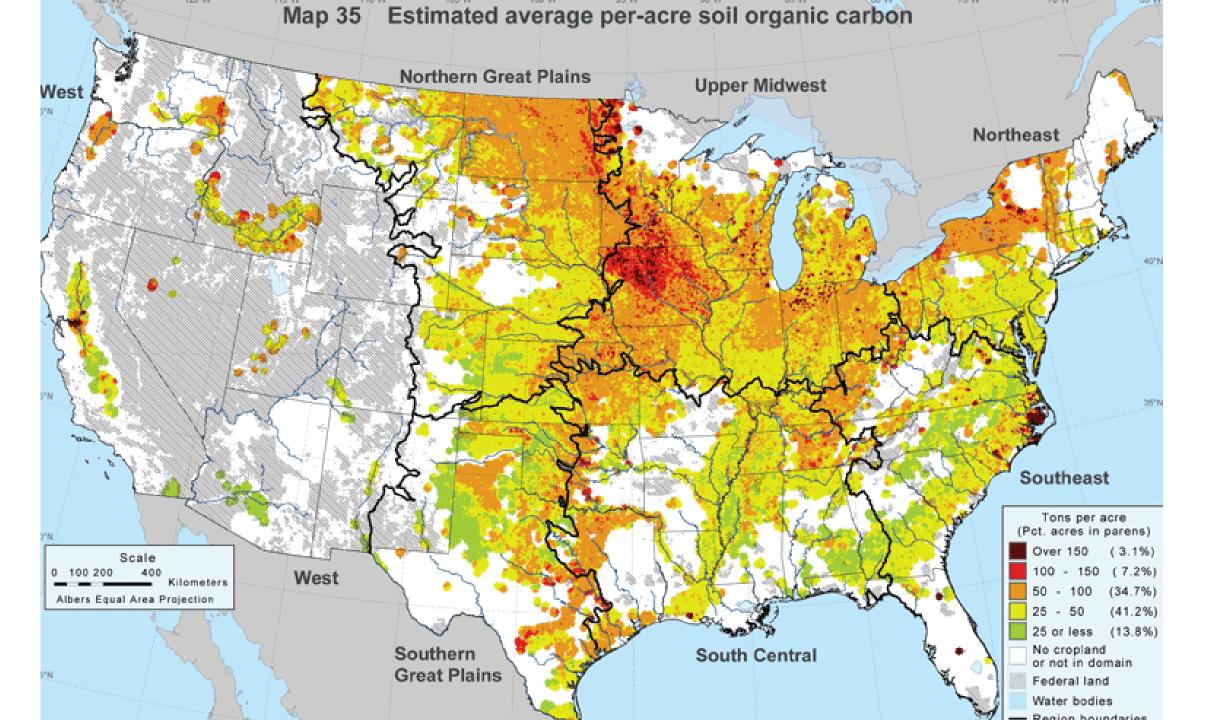
Enable conditions for soil biological processes

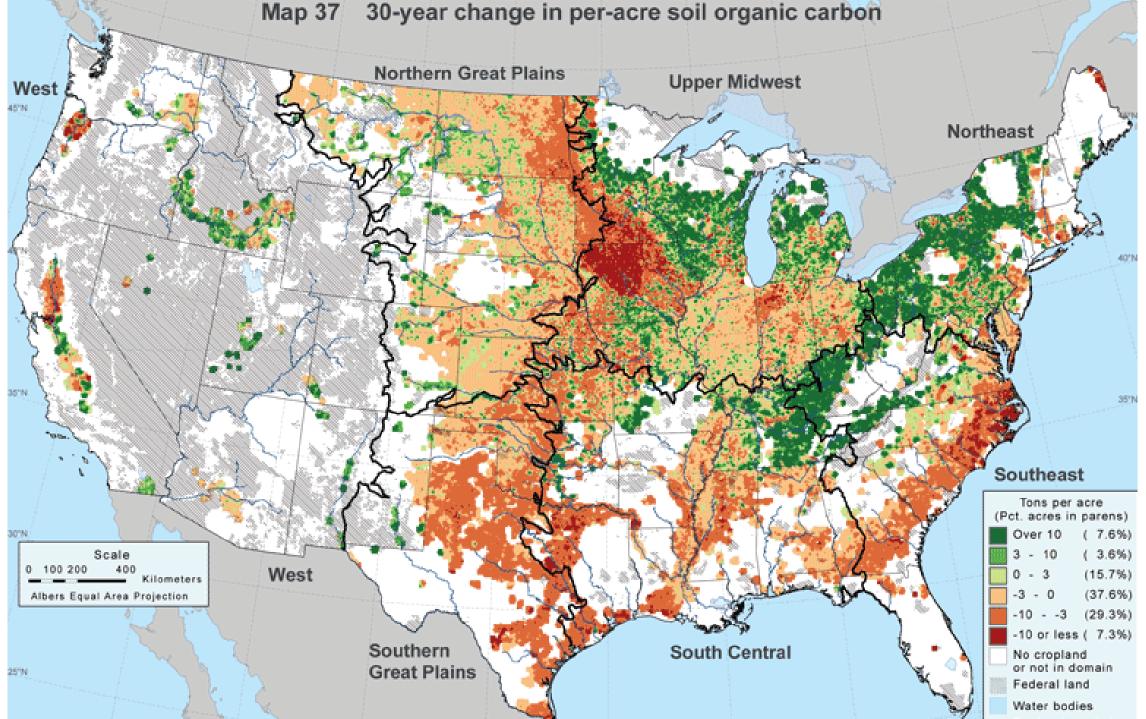


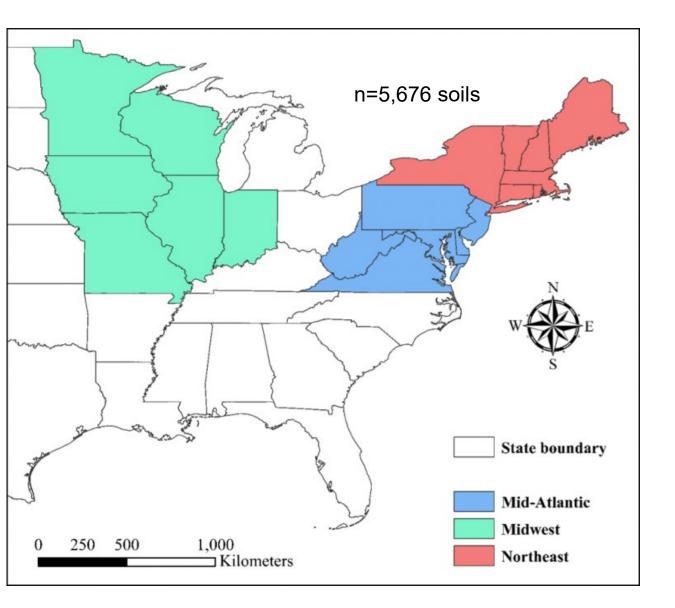
Context matters: Cover crop choices tailored to the Midwest

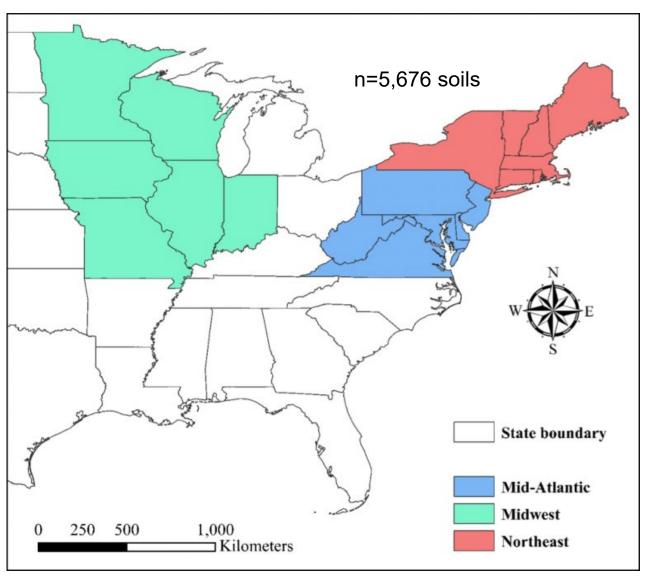



Sudex cover crop; CA Central Valley


Rye, canola, pea, radish mixture; western PA

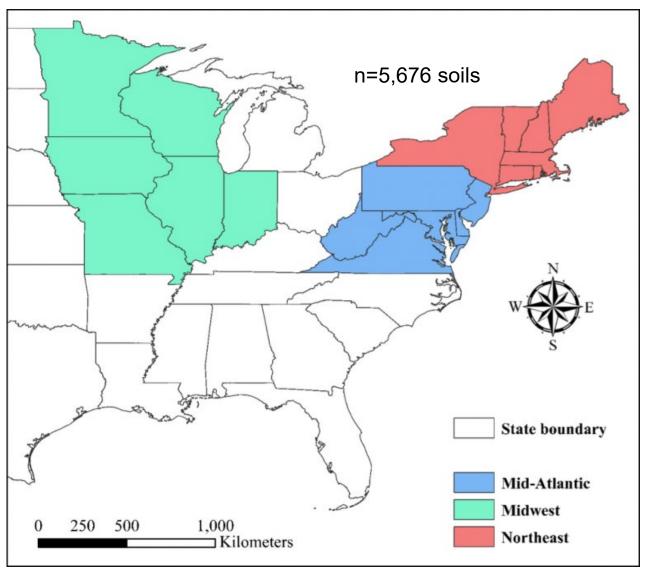

Instructions for using the Row Crop and Vegetable Crop Selector Tools





USDA NRCS

USDA NRCS



<u>Findings</u>

"In general, **soil health** values **for the Midwest** region were **less favorable** compared to the Mid-Atlantic and Northeast, notably for Wet Aggregate Stability, Organic Matter, Active Carbon, Protein, Respiration, and Root Health."

"Midwestern soils generally showed **lower variability** in measured values."

<u>Findings</u>

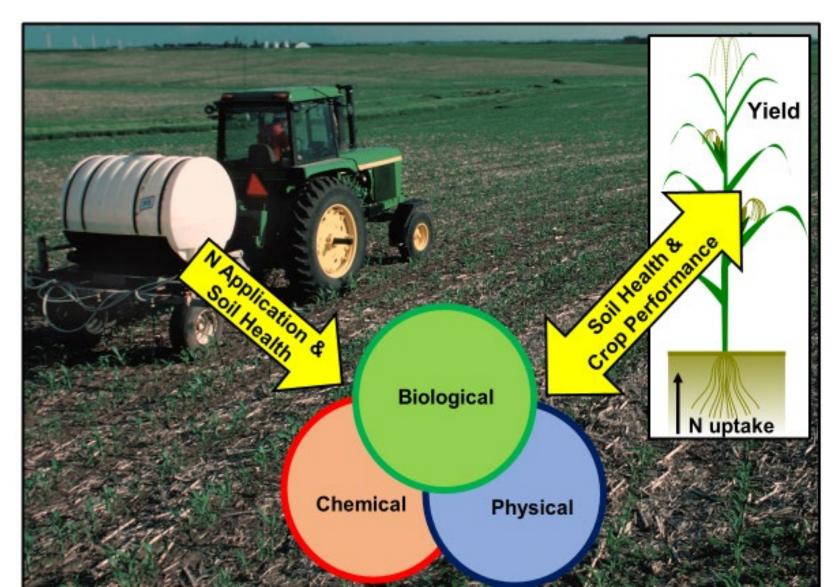
"In general, **soil health** values **for the Midwest** region were **less favorable** compared to the Mid-Atlantic and Northeast, notably for Wet Aggregate Stability, Organic Matter, Active Carbon, Protein, Respiration, and Root Health."

"Midwestern soils generally showed **lower variability** in measured values."

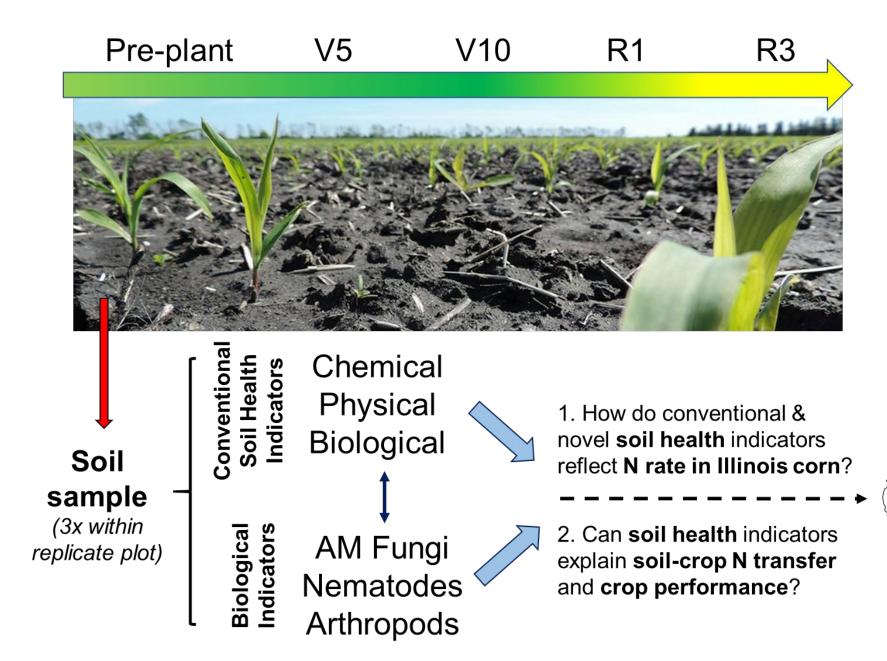
Explanations?

"Northeast and Mid-Atlantic soils generally receive more **organic inputs** (especially manure) and are often managed to include **diverse rotations** with perennial crops, as opposed to typical corn-soybean rotations in the Midwest.

Integrating cover crop + soil health research and initiatives stands to maximize ROI


- Cover crops can drive and enable soil health improvements
 - Fulfill 4 principles of soil health management:
 - 1. Keep the soil covered as much as possible
 - 2. Disturb the soil as little as possible
 - 3. Keep plants growing throughout the year to feed the soil
 - 4. Diversify crop rotations as much as possible, including cover crops
- Physical health as an 'integrator'
 - Easy(er) to evaluate
 - Functional
 - Enables conditions for soil biology
- Next steps: making soil health specific to Midwest cover crop systems

Questions?


MI landscape (fishhawk via Flickr)

STATISTICS IN COLUMN

Current soil health research in Illinois: UIUC-ICGA partnership at Pistorius Farm

Experimental design: ICGA Macon Co. Field Lab

Illinois Soil Health Test (ISHT) Dr. Nick Seiter (left) and UIUC students performing the first soil sampling at ICGA Field Lab in Macon Co.

