
Reduced tillage in vegetable production systems

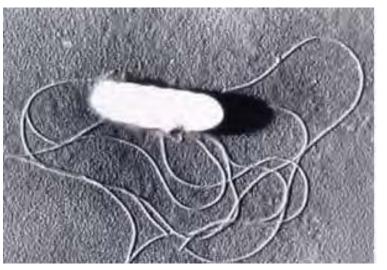
Dr. Ajay Nair Department of Horticulture, Iowa State University

> Mr. Wade Dooley Glenwood Century Farm Albion, IA

Effects of Cover Crops and Strip-tillage on Muskmelon Production and Food Safety

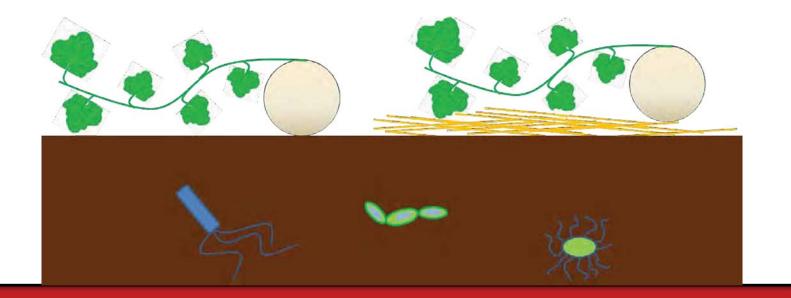
IOWA STATE UNIVERSITY

Sustainable Agriculture Research & Education Funded by a grant from USDA NC-SARE


Background Food Safety Risks of Muskmelon

- Textured Surface is difficult to wash and sanitize
- Edible portion is ideal for microbial growth
- Fruits are in contact with the soil
- Eaten raw
- Rarely washed by consumers

Background Listeria monocytogenes


- Facultative anaerobe, can grow -0.4-50 °C
- Pathogen and saprophyte
- Thrives in cool, damp environments
- 20-30% mortality rate upon infection
- Very similar to non-pathogenic *Listeria innocua*

SEM image of *L. monocytogenes* with flagella https://web.mst.edu/~microbio/BIO221_2010/L_monocytogenes.html

Hypotheses

- Cover crop based strip-tillage systems can produce comparable yields as plasticulture-based systems
- Plant growth and marketable yield will be similar among Striptillage and cover crops will increase microbial measures of soil health
- Cover crop based strip-tillage will prevent contamination of fruit

Methods Experimental Design

• Trials conducted at ISU Horticulture Research Station in

2014-15 and 2015-16

- Split-split-plot design, 4 replications
 - Whole plot factor: cover crop
 - 1° split-plot factor: tillage

Terminate cereal rye at anthesis

Methods Conventional-tillage: Mow Cover Crop

Methods Conventional Tillage

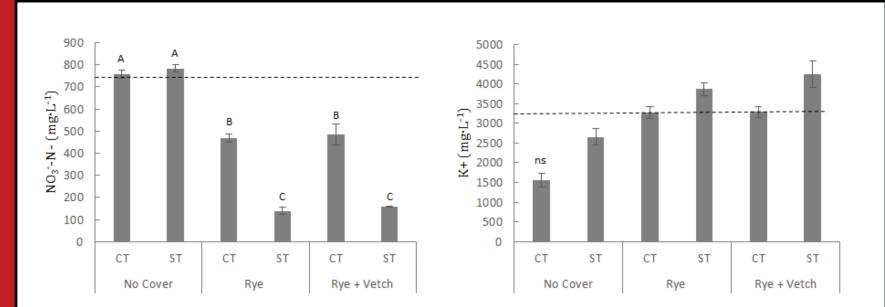
Roller crimper Rhodale Institute

Methods Strip-Tillage

Results **Plant Growth**

Table 8. Measurements of plant health and vigor (vine length, SPAD and petiole sap) as affected by cover crops and tillage in2015 and 2016 in Ames, IA.

	2015 ^z		2016					
Transformer					Petiol	e Sap		
Treatment	Vine Length (cm)			SPAD ^x	NO3 ⁻ -N (mg·kg ⁻¹)	K⁺ (mg·kg ⁻¹)		
Cover Crop								
None	262.8	51.8	356.6	46.6	771.5 Aw	2111.2 B		
Rye	265.6	44.3	327.7	45.5	339.2 B	3572.2 A		
Rye + Vetch	243.1	51.0	316.9	47.9	318.0 B	3755.7 A		
Tillage ^x								
СТ	282.4 a	46.3 b	356.9 a	48.2 a	566.3 a	2711.1 b		
ST	231.9 b	51.8 a	301.6 b	45.1 b	386.1 b	3581.6 a		
Significance								
Cover Crop	ns	ns	ns	ns	0.0008	0.0005		
Tillage	0.0015	0.0231	0.0005	0.0412	0.0003	0.0001		
Cover*Tillage	ns	ns	ns	ns	0.0023	ns		


 $^{\it Z}$ In 2015 SPAD and vine length were measured on 25 Aug.

^y In 2016 SPAD and vine length were measured on 19 Aug.. Petiole Sap measurements were taken on 17 Aug.

 $^{\rm x}{\rm Data}$ were log-transformed for analysis and converted to original values for presentation.

 $^{\rm w}$ Within each year mean separation of cover crop(uppercase letters) and tillage (lowercase letters) in columns is based on least significant difference at P \leq 0.05.

Results Plant Growth: Petiole Sap

Fig. 3. Interaction effects of nitrate-nitrogen (left) and potassium ion (right) concentrations in muskmelon petiole sap of as affected by cover crops and tillage (CT=conventional tillage, ST=strip tillage) sampled on 18 Aug. 2016 in Ames, IA. Mean separation of N-NO₃ (uppercase letters) and K+ (lowercase letters) based on least significant difference at $p \le 0.05$. Error bars represent standard error of the mean. Horizontal dashed line represents the median of the sufficiency ranges for N-NO₃⁻ (700-800 mg·L⁻¹) and K⁺ (3000-3500 mg·L⁻¹) as recommended by Hochmuth et al. (1991).

Results Muskmelon Yield

Yield (weight and number of fruit) of muskmelon fruit as affected by cover crop and tillage treatments in Ames, Iowa in 2014-15 and 2015-16.

	2015				2016						
Treatment	Marketable wt. (Mg·ha ⁻¹⁻)	Total wt. (Mg·ha- ¹)	Marketable no. (no.·ha- ¹)	Total no. (no.·ha ⁻¹)	Marketable wt. (Mg·ha ⁻¹)	Total wt. (Mg·ha ⁻¹)	Marketable no. (no.·ha ⁻¹)	Total no. (no.·ha ⁻¹)			
Cover Crop											
No Cover	17.4	44.4	2545	6770	40.2	58.3 A ^z	4831 AB	7146 A			
Rye	23.7	46.2	3287	6871	34.5	44.3 B	4161 B	5408 B			
Rye + Vetch	17.4	43.3	3093	6734	43.3	51.5 AB	5461 A	6598 A			
Tillage ^y						-					
СТ	23.8 a	48.6 a	3074	6755	42.5 a	59.3 a	5237 a	7484 a			
ST	12.8 b	40.7 b	2876	6835	36.1 b	43.4 b	4398 b	5278 b			
Significance											
Cover Crop	ns	ns	ns	ns	ns	0.0062	0.0080	0.0016			
Tillage	0.0250	0.0051	ns	ns	0.0341	< 0.0001	0.0125	< 0.0001			
Cover*Tillage	ns	ns	ns	ns	ns	ns	ns	ns			

²Within each year mean separation of cover crop (uppercase letters) and tillage (lowercase letters) in columns is based on least significant difference at P≤0.05.

^y CT=conventional tillage, ST= strip tillage.

Soil Health: CLPP, Bacterial Diversity

Results Summer Survival of Soilborne L. innocua

Table 6. Frequency of detecting of *Listeria innocua* in soil samples as affected by cover crops irrespective of tillage treatments in Ames, IA in 2015.

-	~	 -			
Treatment	May ^z Positive	June Positive	July Positive		August Positive
Cover Crop					
None	100%	100%	86%		75%
Rye-Vetch	100%	25%	0%		0%
Rye	100%	37%	0%		0%
Significance					
p value ^y	1.0000	0.0055	< 0.0001		0.0003
Chi-squared	0.000	10.406	19.765		16.000
				-	

^z Soil was inoculated with *L. innocua* on 14 May 2015 samples were taken on 17 May, 15 June , 15 July, and 18 August 2015.

^y Chi-squared test of independence.

Results **Presence of** *L. innocua* **on Fruit**

Table 3. Frequency of detecting *Listera innocua* on the exterior of muskmelon fruits in Ames, IA in 2015 and 2016. Treatment factors were cover crop, tillage, and the month soil was inoculated with *L. innocua*.

Treatment	2015 Positive	2016 Positive		
Cover Crop				
None	$18.8\%^{z}$	25.0%		
Rye+Vetch	12.5%	0%		
Rye	12.5%	6.3%		
Tillage				
СТУ	10.4%	16.7%		
ST	4.2%	4.2%		
Inoculation Month				
October	8.3%	8.3%		
May	6.3%	12.5%		
Significance				
Cover				
p value	0.8460	0.0549		
Chi-squared	0.3345	5.8047		
Tillage				
p value	0.2199	0.1563		
, Chi-squared	1.5052	2.0093		
Inoculation Month				
p value	0.6826	0.6366		
Chi-squared	0.1672	0.2233		

^z Percentages represent the proportion of samples that were positive for *L. innocua*. ^yCT= conventional-tillage, ST= strip-tillage

Conclusion

- Cover crops and strip-tillage suppressed weeds
- Strip-tillage can reduce NO₃⁻-N leaching, though not consistently
- Conventional-tillage increases vine length
- Conventional -tillage increased marketable yield
- Conventional-tillage may increase MBC, only in presence of cover crop
- Cover crops have a positive impact on soil bacterial diversity
- Soilborne *L. innocua* can overwinter in Iowa
- Cover crops decreased populations of soilborne L. innocua
- Cover crops and tillage had no effect of fruit contamination

Many Thanks

Brandon Carpenter Dana Jokela Ray Kruse Jennifer Tillman Kristine Neu John Krzton-Presson

LEOPOLD CENTER FOR SUSTAINABLE AGRICULTURE

National Wildlife Federation

IOWA STATE UNIVERSITY Extension and Outreach

On-farm trial Wade Dooley, Glenwood Century Farm, Albion, IA

IOWA STATE UNIVERSITY Extension and Outreach

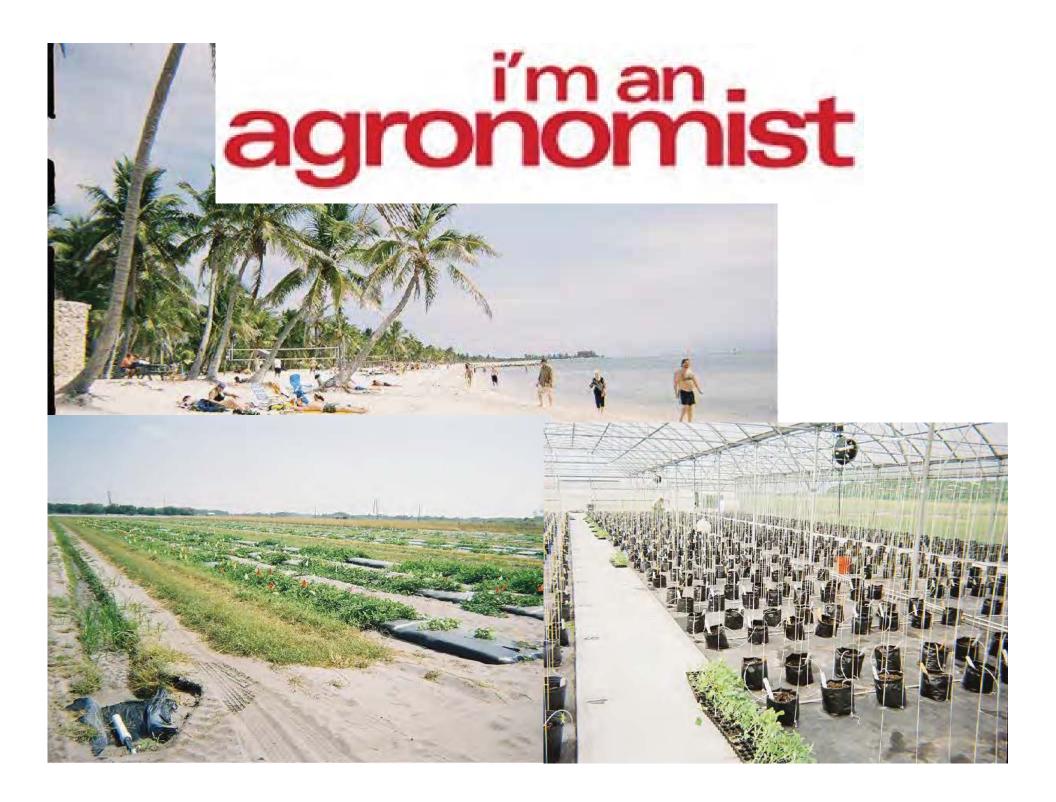
Cover Crops and Conservation Tillage in Winter Squash Production

Wade Dooley

6th Generation Albion, IA

Row-crops

Cattle


Small Grains

Hay

Heavy tillage
Plasticulture
Cornstalk mulch
Cover-cropped alleyways

An easier way; a better way?

Weeds?

Roller-crimped ryeStrip-tilled squash

Remember, pictures don't always tell the whole story

Plasticulture
had multiple
weedings
Rollercrimped rye
had almost
none

Good crews make the job go faster!

Winter squash growth

Treatment	SPAD	Vine length (cm)		
Conventional	38.6	616 a		
Strip-tillage	38.6	227 b		

IOWA STATE UNIVERSITY Extension and Outreach

Winter squash yield

Treatment	Total count	Total wt (lb)	Average fruit wt (lb)
Conventional	541 a	1322 a	2.4 b
Strip-tillage	438 b	1118 b	2.6 a

IOWA STATE UNIVERSITY Extension and Outreach

Contact

Dr. Ajay Nair Email: <u>nairajay@iastate.edu</u> Phone: 515-294-7080 Wade Dooley Glenwood Farm glenwoodfarm@gmail.com

Updates:

http://iowavegetables.blogspot.com www.extension.iastate.edu/vegetablelab