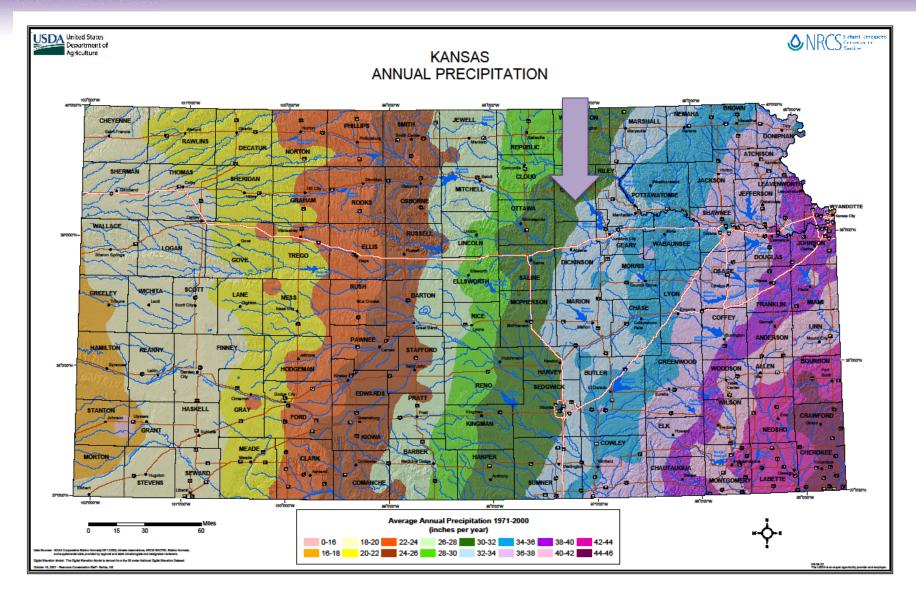


Use of Cover Crops for Weed Suppression in Field Crops in Kansas

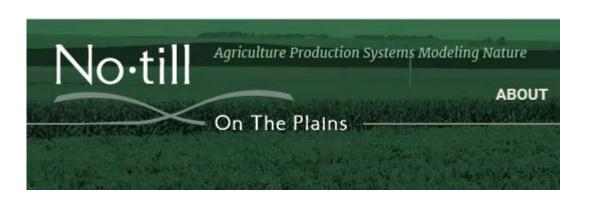
Anita Dille and Josh Lloyd



Introduction

- ✓ Kansas' farmers are demanding information about using cover crops for weed suppression
- ✓ Kansas cropping systems very diverse from west to east:
 - ✓ Winter wheat-fallow
 - ✓ Winter wheat-grain sorghum-fallow
 - ✓ Grain sorghum-soybean-winter wheat
 - ✓ Corn-soybean-winter wheat
- ✓ Length of fallow periods reduced from west to east

- ✓ Key 'driver' weed species in Kansas, have single or multiple resistance to herbicides:
 - ✓ Horseweed
 - ✓ Kochia
 - ✓ Palmer amaranth
 - ✓ Waterhemp



✓ In farmers' fields, to what extent are cover crops suppressing weeds before soybean planting

✓ How are farmers' fitting cover crops into their Kansas' cropping system

Josh Lloyd's Base Rotation

```
Year 1 — Year 2 — Year 3 — Year 4 — Year 5

[DC WW – DC SB or CC] — [WW – DC] — [Corn or Milo] — [SB] — [SB]
```

Opportunities for Cover Crops

- Summer after Winter Wheat
- Winter after Corn, Soybeans, Grain sorghum

Fall vs Spring Planting

Fall

- Cover Crop Options Limited
- Over Winter Growth
- Less issue with Residue blowing
- Knock Down Snow Catch

Spring

- More Cover Crop Options
- More issues with Residue blowing
- Can burndown winter annuals and grasses

Clay County Cover Crop Mix

Legumes		2%						
Clover -Balansa "FIXatioN"	1.0	2%	L165-15-972-C	OR	80.00%	52.90%	0.00%	47.10%
Grasses		90%						
Spring Oats - Rockford	18.0	34%	MISC.RF_DF_14.1	SD	99.00%	99.56%	0.24%	0.20%
Spring Forage Barley	15.0	29%	TM_NE_14.25	NE	95.00%	99.49%	0.50%	0.01%
Triticale - Spring 141	14.0	27%	Pf-2015	NE	91.00%	99.71%	0.10%	0.19%
Brassicas Rapeseed - Trophy	1.1	4%	45033-CAN	ID	85.00%	98.00%	0.50%	1.00%
Other Broadleaves		4%						
Safflower- Finch	2.1	4%	BS-VP-14-01	MT	83.00%	99.96%	0.00%	0.049

Green Cover Seed 918 Road X Bladen, NE 68928 402-469-67

ollar warrante that this seed conforms to the label description as required by federal and state seed laws. We make no oth

April 19, 1 month after Planting

Surveyed June 1 for cover crop biomass and weed biomass and density prior to soybean planting

Weeds in:

bare strip

 $= 14.2 \text{ weeds/m}^2 (3.3 \text{ g/m}^2)$

oat cover crop = 7.2 weeds/m²

mixed cover crop = 1.2 weeds/m²

June 7

August 2nd

2016 Test Site Clay County

August 24th Soybean heights: Bare ground 82 cm Oat only 71 cm Mixture 58 cm

Osage City field site, 2016
Planted cover crops March 10
Surveyed June 3 for cover crop biomass and weed biomass and density

Weeds in: bare strip

 $= 142 \text{ weeds/m}^2 (3.3 \text{ g/m}^2)$

oat cover crop

 $= 76 \text{ weeds/m}^2 (0 \text{ g/m}^2)$

August 30

Bare strip = downy brome

Oat cover strip = few weeds

Suppression on Farmer's Fields

- ✓ Spring-sown cover crops (dominated by spring oat) provided:
 - √ 50% or more reduction in individual weed plants
 - √ 95% or more reduction in weed biomass

✓ Economics for Clay County farmer:

Weed control costs, 2016

Field Activity	Date	C	Cover Crop		Bare Soil		
		\$/ac	Products	\$/ac	Products		
Winter weed	2/25			\$11.16*	4 oz metribuzin 8 oz dicamba		
control	3/14	\$36.34	Seed \$18.34 Drill rent \$18.00				
Burndown + PRE	6/1			\$28.87*	3 oz Authority XL 1.5 oz Zidua 8 oz 2,4-D 24 oz glyphosate +1# AMS		
Burndown	6/7	\$7.89 *	24 oz glyphosate + 1# AMS				

^{*} Includes application cost of \$6.00 / acre

Weed control costs, 2016

Field Activity	Date	Cover Crop		Bare Soil	
		\$/ac	Products	\$/ac	Products
Early POST	7/8			\$21.33*	24 oz U Blazer 24 oz glyphosate 16 oz COC + 1# AMS
	7/24	\$16.77*	24 oz Ultra Blazer + 1# AMS		
Late POST	8/3	\$23.65*	24 oz U Blazer 0.4 oz Cadet 24 oz glyphosate + 1# AMS + NIS	\$20.53*	24 oz U Blazer 0.4 oz Cadet + 1# AMS + NIS
TOTALS		\$84.65		\$81.89	

^{*} Includes application cost of \$6.00 / acre

K-State HB Ranch,

Hays, KS 2016

Drilled cover crops mid-March

Surveyed June 13 for cover crop biomass and weed biomass and density

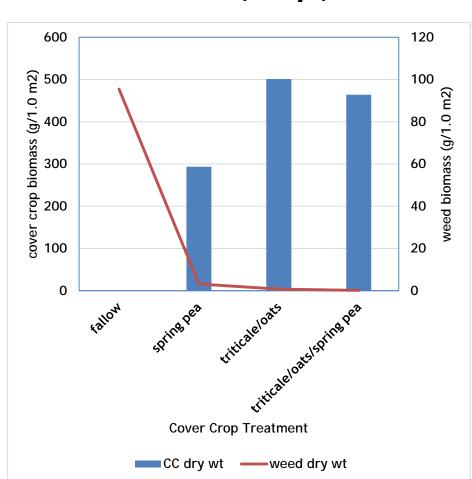
Weeds in:

Fallow = 258 weeds/m² (95.4 g/m²) Spring pea = 68 weeds/m² (3.2 g/m²) Triticale/oat = 28 weeds/m² (0.7 g/m²) Spring pea/triticale/oat mix = 6 weeds/m² (0.2 g/m²) K-State Northwest Research Center, Colby, KS 2016

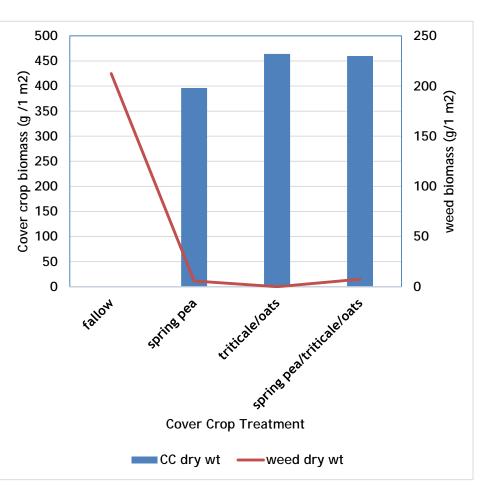
Drilled cover crops mid-March

Surveyed June 13 for cover crop biomass and weed biomass and density

Weeds in:


Fallow = 153 weeds/m² (212 g/m²) Spring pea = 76 weeds/m² (5.8 g/m²) Triticale/oat = 0 weeds Spring pea/triticale/oat mixed

 $= 32 \text{ weeds/m}^2 (7.4 \text{ g/m}^2)$



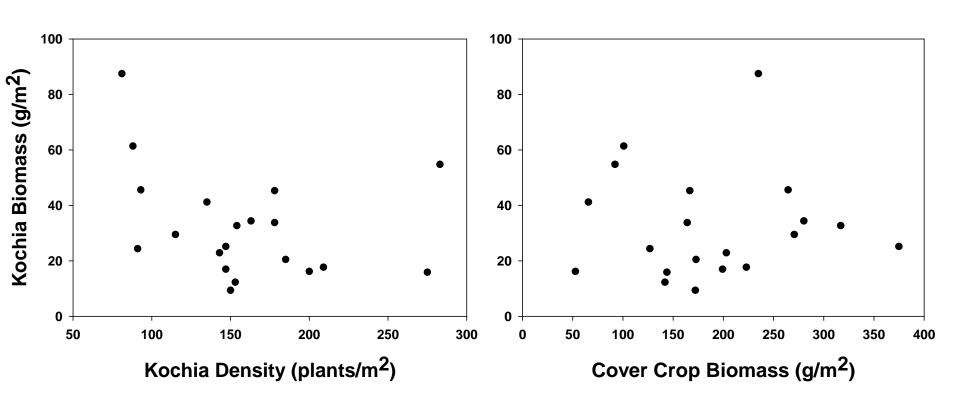
HB Ranch, Hays, KS

NW Research Ctr, Colby, KS

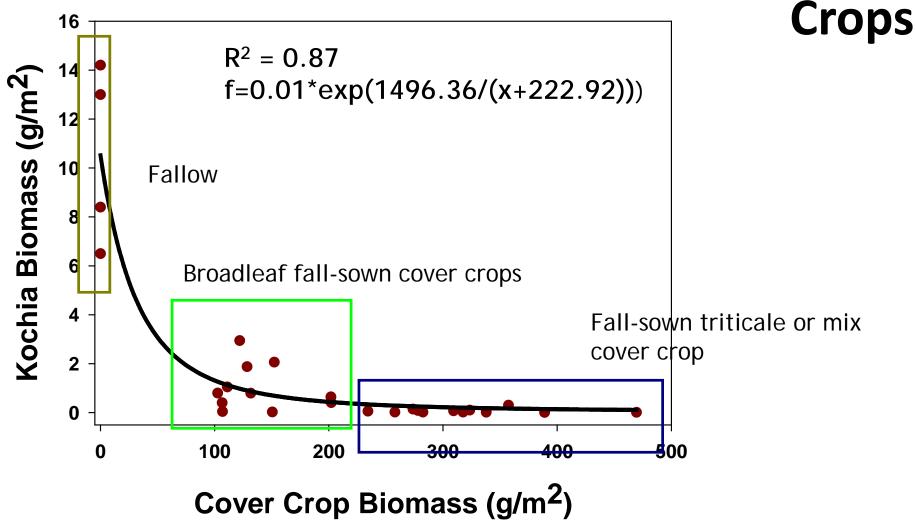
Suppression at on-station fields

- ✓ Spring-sown cover crops (dominated by cereals) provided:
 - **√** 50% or more reduction in individual weed plants
 - √ 95% or more reduction in weed biomass

Weed Suppression


- ✓ "Driver" weed species should dictate the recommended timing of cover crop sowing and establishment
 - √ Summer and winter cover crops for
 - ✓ Horseweed
 - √ Kochia
 - ✓ Early spring cover crops for
 - ✓ Palmer amaranth
 - ✓ Waterhemp

Kochia response to Spring Cover Crops

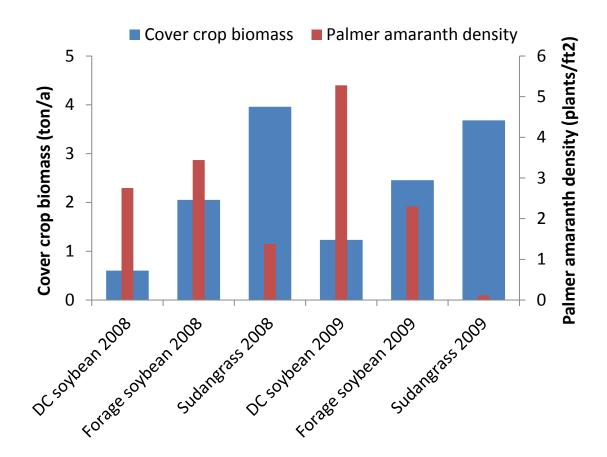

Spring Cover Crop Biomass and Kochia Biomass

Kochia Response to Fall Cover

Horseweed Suppression

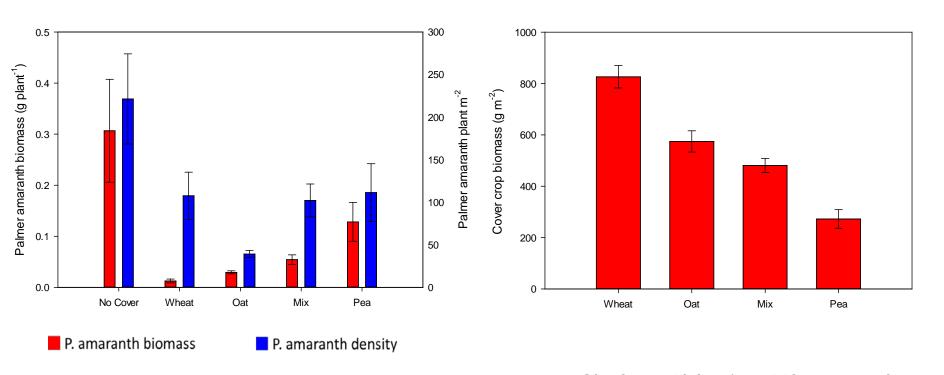
	Horseweed	Suppression
Treatment	2013	2014
		0/0
Untreated Control	0 d	0 d
Annual ryegrass	21 cd	59 c
Winter wheat	20 cd	93 ab
Winter barley	35 c	90 ab
Winter rye	94 ab	96 a
Spring oats	14cd	-
Spring rye	-	89 ab
Winter rye/spring no residual	100 a	100 a
Fall residual	100 a	99 a
Fall no residual	94 ab	75 bc
Spring residual	98 a	85 ab
Spring no residual	97 ab	100 a

Andi Marie Christenson. 2015. Cover crops for horseweed [Conyza canadensis (L.)] control before and during a soybean crop. MS Thesis. Kansas State University.


Palmer amaranth in grain sorghum

Palmer amaranth suppression with summer cover crops

Cover crops after wheat harvest, before next year's grain sorghum



Palmer amaranth suppression with spring cover crops

Palmer amaranth biomass and density prior to cover crop termination, May 18, 2015.

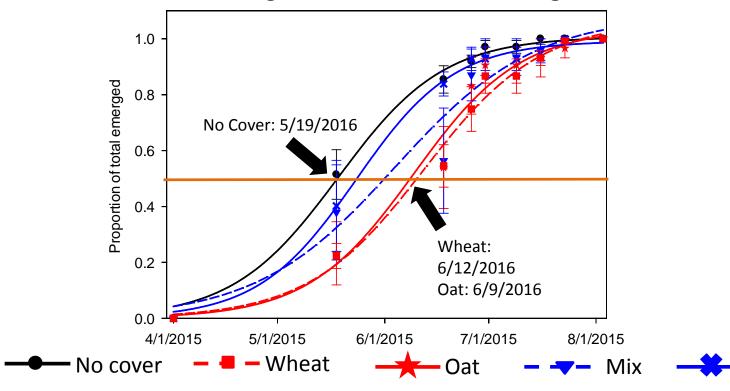
Aboveground cover crop biomass at termination, May 18, 2015

Chelsea Ahlquist, MS research

Cover crop impacts on Palmer amaranth

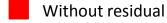
No cover, May 13, 2015

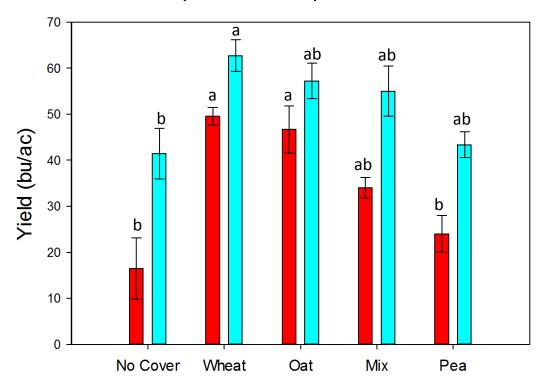
July 13, 2015



Terminated
Winter wheat
Cover crop

Knowledge ^{for}Life


Season-long Palmer Amaranth Emergence



Soybean Yield by Treatment

With residual

Cover Crop vs Herbicide

Cover Crop

- Costs similar to Herbicide
- Builds Soil
- Improves Water Infiltration
- Soil Armor
 - Temperature
 - Wind Erosion
 - Water Erosion
- Grazing Option

Herbicide

- Costs similar to Cover Crop
- Can leave target area
- Soil sits Fallow
- Soil is susceptible to
 - Temperature
 - Wind Erosion
 - Water Erosion

Wheat Cover Crop ahead of Corn

Cover Crop between Wheat Crops

Grazing Cover Crops

Summer Winter

Erosion Control

Josh Lloyd - Building Top Soil

2005 2015

Conclusions and Implications

- ✓ Cover crops in no-tillage systems on farmers'
 fields are suppressing weeds, reducing total
 numbers and biomass
- ✓ Alter cropping system to include cover crops (delay row crop planting until after June 1)

- ✓ Main suppressor is presence of cereal cover crop (wheat, oats, triticale)
- ✓ Need established cover crop prior to emergence of "driver" weed species

Thank you and Questions

