Northeast **Cover Crop Efforts** Victoria J. Ackroyd¹, Lisa Kissing-Kucek², & Steven B. Mirsky¹ ¹USDA-ARS BARC, Beltsville, MD;

²Cornell University

Dr. Steven Mirsky (Research Ecologist)

- USDA-ARS Beltsville Agricultural Research Center
 - Sustainable Ag. Systems Laboratory
- Education
 - Ph.D. Agronomy
 - M.S. Soil Science
 - BA Agroecology

United States Department Of Agriculture Agricultural Research Service

Research approach to quantifying the effects of cover crops on agro-ecosystem services

Cover crop effects on agro-ecosystem services

• N scavenging, availability, fixation, and use efficiency; weed control, water and soil quality, and GHG emissions

Cover crop management

- Planting and termination timing/methods, seeding rates, mixtures, integration with animal manure
 - Species specific responses to climate and edaphic properties

Cover crop germplasm assessment

• National legume cover crop breeding program

Develop cover crop-based no-till crop production systems

• Organic and conventional systems

Ecologically based weed management

• Multi-tactic approaches; weed-crop competition

Lower Chesapeake Bay – Long-term Agricultural Research (LCB-LTAR) Cover Crop Systems Project (CCSP)

			Re	p 1		R	Rep 2						Rep	3					Rep 4	ł		
L	90"	40'	90"	190'		180'		90"	90"		90"	9	0"		160'		170'	10	0'	100'		100'
40'	106 (4)		112 (3)	118 (1)		206 (2)	2	12 (3)	218 (4)		306 (3)	312	(4)	-	<mark>318 (1)</mark>		406 (2)			412 (6)		418 (5)
	105 (6)		111 (5)	117 (2)	20	05 (1)	2	11 (5)	217 (6)		305 (5)	311	(6)	D	<mark>317 (2)</mark>		405 (1)			411 (4)		417 (3)
"	104 (4)		110 (3)	116 (1)		204 (2)	2	10 (3)	216 (4)		304 (3)	310	(4)	G	316 (1)		404 (2)			410 (6)		416 (5)
s o	103 (6)		109 (5)	115 (2)	20	03 (1)	2	09 (5)	215 (6)		303 (5)	309	(6)	Ļ	315 (2)		403 (1)			409 (4)		415 (3)
T H	102 (4)		108 (3)	<mark>114 (1)</mark>		202 (2)	2	08 (3)	214 (4)		302 (3)	308	(4)	Ğ	314 (1)		<mark>402 (2)</mark>			408 (6)		414 (5)
	101 (6)		107 (5)	<mark>113 (2)</mark>	20	01 (1)	2	07 (5)	213 (6)		301 (5)	307	(6)	-	313 (2)		<mark>401 (1)</mark>			407 (4)		413 (3)
I	Co	nventi	onal	Organic		Organic		Conve	entional		Conve	ntional			Organic		Organic			Conv	ventio	nal
							<	JD A	B GPS lines are	Sou	th Dog 15" or 3	0"			JD AB GPS lines	are	North Dog 15" or 30"	>				

South Farm Dirt Road

South Farm Dirt Road

System Descriptions

	system (#)	CORN	SOYBEANS	WHEAT				
AND	1	r/v - C - r	r - SB - w	W- r/v				
ORG	2	r/v - C - r	r - SB - w	W- r/v				
-	3	С	SB - w	W - DB				
VTOW	4	C-r	r - SB - w	W - DB				
ONVEN	5	g/l mix - C- r	r - SB - w	W - DB/ interseed g/l mix*				
0	6	g/l mix - C - r	r - SB - w	W/ interseed g/l mix*				

Crop Designations
C- Corn
SB- Full Season Soybeans
W- Wheat
DB- Double Crop Soybeans
r/v- cereal rye and hairy vetch mix
r- cereal rye
a/l mix- grass legume mix *

^ No sampling ^
AREAS IN TRANSITION
Field operations are not affected

Lower Chesapeake Bay – Long-term Agricultural Research (LCB-LTAR) Cover Crop Systems Project (CCSP)

Conservation Innovation Grant - Modeling

- Team members in PA, MD, NC, GA
- Short-term benefits of cover crops
 - Water infiltration, availability, use efficiency
 - Nitrogen availability and use efficiency
- Validate, calibrate, and improve processbased models for H_2O and N estimation
- Define mechanistic relationships governing surface and incorporated cover crop decay
- Decision support tools for farmers on water and adaptive N management

An IPM approach to addressing the multiple herbicide-resistant weed epidemic in three major U.S. field crop production regions

(USDA-ARS Area-wide funded project)

National effort examining multi-tactic weed mgmt.

- Emphasis on role of cover crops

Creating The Cover Crops That Organic Farmers Need: Delivering Regionally Adapted Varieties Across America

Aariculture

Mirsky *et al.*

United States National Institute of Food and Department of Aariculture

OREI 2015

Priority Traits Ranked by Farmers

Northeast Cover Crops Council

- Project that ties Dr. Mirsky's program together
- Funding sources: USDA-NIFA OREI breeding grant, USDA-NIFA Post Doctorate fellowship, NE-SARE PDP grant
- Team members to date: USDA ARS, NRCS, & PMC's, universities, seed companies
- NRCS Soil Health Initiative
- Goal: support and encourage cover crop use in the Northeast
 - identify knowledge gaps
 - meta-analysis across region to fill gaps
 - provide precise info to farmers using process based models to create decision tools to predict cover crop growth and development

Northeast Cover Crops Council

- Goal: support and encourage cover crop use in the Northeast
 - encourage cross-collaboration and research
 - provide resources to farmers
 - suite of cover crop decision tools
 - website
- SESYNC post-doc?
 - data synthesis, meta-analysis, and database management
- 1st meeting March 31 April 1, 2016

Acknowledgements for NECCC

- USDA-OREI project # MD.W-2015-07406
- USDA-NIFA Fellowship proposal # 2015-03658
- SARE project # ENE16-144
- Our many collaborators!

USDA United States Department of Agriculture National Institute of Food and Agriculture

Questions?