Using No-till and Cover Crops to Reduce Phosphorus Runoff

How to Avoid SRP in Surface Water

Dr. K. Rafiq Islam, Research Scientist Jim Hoorman, Assistant Professor, Agriculture and Natural Resources hoorman.1@osu.edu

Agriculture in Lake Erie Basin

- 4.2 Million Acres Maumee Watershed
- 4.9 Million Acres in Lake Erie Basin
- 59.1% cropland
- 72% cropland in Northwest Ohio.

Interesting Lake Erie Facts

- 50/2 Rule
 - Superior 50% of water/2% of fish
 - Erie 50% of fish/2% of water
- \$10.7 billion economic activity while employing 119,100 Ohio residents and generating \$750 million in tax dollars
 THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

HAB Timeline

0.001

10/09/11 Image Lake Erie

Google Earth

🧷 😂 💣 🖬 🙆 🚢 - 16:52 UTC 09 October 2011 erra MODIS true color image

Grand Lake St. Marys 2010

SRP in Surface Water

- Two Key factors: a) Soil P concentration b) Transport Factor
- Soil P concentration
- * Transport Factor

= Pounds of P Lost to Surface Water

Phosphorus in Crop Production

Common P Information

- Current P Use Efficiency 10% 25% -50%
 Best estimate: 25% P Use Efficiency
- 80% of P runoff comes from 20% of land
- 60-90% of P runoff occurs in the 1-2 most intense rainfall events that occur each year!
- While P soil concentration is critical, most P runoff comes from fields close to streams.

Annual Loads of Total Phosphorus to Lake Erie, 1967-2007

Dissolved Reactive Phosphorus Concentration

Renewed Concerns about Lake Erie and Nutrient Loading

- Issue in 1960-1970's was Total P Loading
- Issue in 1990-2000's is Bioavailable or Dissolved Reactive Phosphorous

- Key facts about P: 60-90% of P runoff occurs in 1-2 rainfall events each year.
- 80% of the P is coming from roughly 20% of the land.

Organic Phosphorus

About 50-80% of the Available P in soil is organic.

P stabilizes the OM and forms a bridge to the clay.

Our current P use efficiency is 25-30%. Microbes

unlock P chemical bonds and make P plant available.

Phosphorus Testing

Phosphorus Form and Availability to Algae

	Phosphorus form	% Bio Availability	Results
	Particulate	30	Algae grow slower
or	Soluble	100	More available and quicker growth

Phosphorus Speciation

- Plant Available P
- Soluble Reactive (SRP) P_i Inorganic P P_i
- Exchangeable (ExP) P_0 Active Carbon- P_0
- Slowly or Not Plant Available P
- Ca²⁺/Mg ²⁺
- Fe^{3+}/Al^{3+}
- Res P_o
- Total P

- Calcium/Magnesium- P_i
 - Iron/Aluminum- P_i
 - Humus Residual P_o
 - $= AII P_{o} + AII P_{i}$

Ferric–P to Ferrous-P

Caused by Saturated Soil Conditions and Lack of Oxygen in soil profile.

Iron is releasing SRP when soils become flooded with water.

Let's look at some common practices that have a negative impact on soil health and water quality

No soil structure, no infiltration

Long Term No-Till vs. Rotational Tillage

Both Fields are a Corn/Soybean Rotation

These pictures are of a newly emerging corn crop

NoTill soybeans then StripTill Corn NoTill Soybeans then Tilled corn

Saturated Soils

• Under saturated soil conditions, soil microbes strip or release oxygen.

 Example NO³⁻ becomes N₂0 and N₂ with bacteria striping the oxygen away from the nitrate causing denitrification.

• What other oxides exist in the Soil?

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Phosphorus Speciation

- Oxidization (Lose Electrons)
- Iron (III) Fe³⁺ (Ferric Fe) Yellow-Red

Manganese – MN²⁺

Copper – Cu^{2+}

Reduction (Gain Electrons)

Iron (II) - Fe²⁺ (Ferrous Fe) Yellow-Grey-Blue

Manganese – MNO₄-

Copper – Cu⁺

OSU Research study

- Sundermeier, Islam, Hoorman 2013-2014
- Took 50 soil samples comparing no-till versus conventional, cover crop versus bare soil, organic versus conventional, manure (poultry, dairy, none), and crop rotation on Hoytville clay soil.
- Samples taken at following depths:
 10 cm (4 inches), 20 cm (8 inches),
 30 cm (12 inches)

Key Findings

- Management influences P soil distribution.
- Most soil P tied up by Residual P_o, Fe/Al, and Ca/Mg.
- Only a small amount is SRP or P_i (<0.5%)
- Concentration of P decreases with increasing soil depth.
- SRP and EP (which are plant available) are influenced by management practices and soil depth.

Stratification of P by Crop Rotation

Crop Rotation	SRP	EP	CaP	FeP	Res P	Total P
C-S-W	0.2c	2.6c	5.1b	6.8c	2.0a	2.3b
C-C	0.3c	3.4c	11.5a	19.4b	1.6b	2.1b
C-S	0.3c	0.6d	13.0a	28.1a	1.5b	2.8b
S-S	0.3c	0.3d	5.7b	24.7a	2.1a	2.6a
Alfalfa	0.9b	5.7b	6.6b	1.4d	2.0a	2.1b
Field Grass Waterway	1.7c	7.0a	3.0c	18.3b	1.8a	2.5a
Forest	1.5c	7.3a	1.6c	1.4d	1.9a	1.8c

Vegetated fields had higher SRP & EP? What happened to the SRP in tilled fields?

Cover Crops versus Control

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops					
0.34b	1.23a	21.2a	25.7a	147.7b	196.1b
	8.8X				
Control					
1.42a	0.14b	18.0b	27.1b	162.8a	209.5a
4.2X				1.1X	1.07

Cover crops had significantly lower soil concentration of P in the SRP (4.2x less), And Res P, but much higher EP (8.8X).

Cover Crops vs Control Stratification

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops					
0.4b	61.7a	1.6a	1.4a	1.5b	2.0a
	9.1X				1.25X
Control					
1.8a	6.8b	1.4a	1.4a	1.6a	1.6b
4.5X					

Cover crops (Red clover) had significantly lower soil stratification of P in the SRP fraction but significantly higher EP and TP fractions.

Mercer County Study

- Grand Lake Watershed, Mercer County, Ohio
- Two contrasting soils: Epiagualfs (Blount) and Agriaquolls (Pewamo)
- Seven sites for each soil (low to extremely high Bray P₁, grass, and forest).
- Soil samples:<25, 25-75, 75-150, 150-300, and >300 PPM Bray P₁.
- Depth (0-1, 1-3, 3-6, 6-9, and 9-12 inches).

Agriaquolls (Pewamo)

P Level Bray P ₁	Fe/Al-P (mg/kg)	Res-P (mg/kg)	TP (mg/kg)	Ratio Res/Fe	SOM (%)
Low (<25 PPM)	108.0	570.5	711.2	5.3	2.9
Medium (25-75 PPM)	125.1	592.9	740.1	4.7	3.1
High (75-150 PPM)	286.6	736.3	1052.2	2.6	2.9
V. High (150-300 PPM)	275.0	473.9	774.4	1.7	1.6
Ex High (>300 PPM)	345.8	655.1	1052.0	1.9	3.3
Grass	47.3	449.1	532.5	9.5	8.6
Woods	36.2	261.1	321.9	7.2	12.9

Epiagualfs (Blount)

P Level Bray P ₁	Fe/Al-P (mg/kg)	Res-P (mg/kg)	TP (mg/kg)	Ratio Res/Fe	SOM (%)
Low (<25 PPM)	104.3	333.3	455.2	3.2	3.2
Medium (25-75 PPM)	131.2	355.1	501.5	2.7	2.7
High (75-150 PPM)	178.9	550.8	753.4	3.1	3.1
V. High (150-300 PPM)	291.9	534.4	871.2	1.8	1.8
Ex High (>300 PPM)	280.3	557.2	668.3	1.3	1.3
Grass	50.9	436.3	515.4	8.6	5.2
Woods	37.7	477.8	551.6	12.7	5.1

Has Phosphorus Changed?

Not really. So What has changed since 1995?

- 1) Weather: Increase number, higher intensity of rains, longer duration.
- 2) We have better environment for cyanobacteria. Warmer weather + more nutrients = Explosion
- 3) Change in farm size
- 4) More tile spaced closer together with more surface inlets.
- 5) Fertilizer applications have changed. More fall application to accommodate farm size.
- 6) More vertical tillage, larger farm equipment, more soil compaction.
- 6) Fertilizer Enhancers (Avail/Jumpstart)
- 7) Less Soil Organic Matter

Bulk Density and Compaction

Dynamic Properties: Infiltration

If rainwater runs off field.... It is not available to the crop

 Dynamic Soil Property greatly influenced by
 management

Tillage System	Water Infiltration Rate after 1 Hour (in/hour)	Bare Soil
Plowed, disked, cultivated, bare surface	.26	
No-tillage, bare surface	.11	Low Residue Cover
No-tillage, 40% cover	.46	
No-tillage, 80% cover	1.04	High Residue
		Cover

• Residue cover prevents soil crusts

No-TILL creates macropores

ECO Farming & live roots acts like a biological valve to absorb N and P.

Illustrated by Cheryl Bolinger-McKirnan & Jim Hoorman

Bringing Knowledge to Life Managing plant roots affects nutrient recycling

Fertility Applications

 Frozen and snow covered applications have the greatest risk of off site movement whether manure or commercial fertilizer.

Figure 22. Mean monthly particulate- and dissolved-phosphorus yields and runoff, Discovery Farms and Pioneer Farm, water years 2003–8.

The Ohio State University

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Benefits of Cover Crops

- Increase water infiltration Move SRP_i down into soil profile.
- Decrease bulk density and increase pore space for both air and water – Less saturated soils.
- Increase soil organic matter content which improves soil structure and holds P tighter $SRP_i < EP_o$ and $FeP_i < Res P_o$