Rye Research at the University of Minnesota

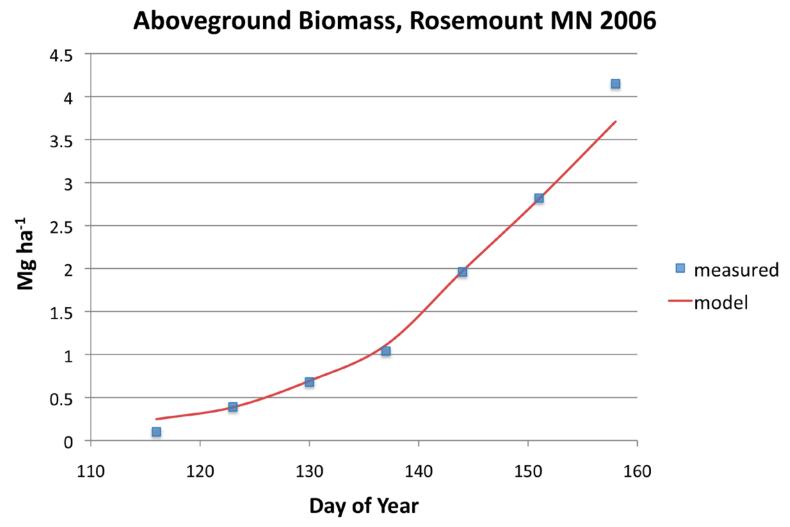
Contributors to this presentation include: Deborah Allan, John Baker, Melissa Wilson, Erik Krueger and Adam Herges

Cover Crops

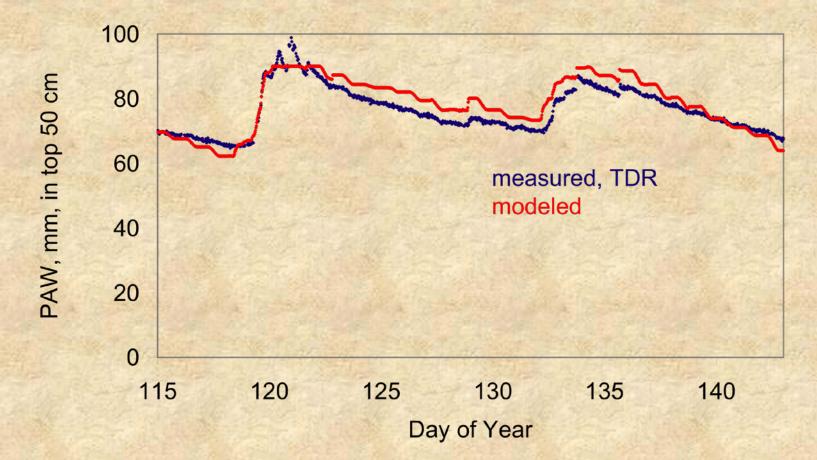
- Why use cover crops?
 - Increase organic matter
 - reduce erosion and runoff
 - reduce nitrate leaching
- Why winter rye?
 - Hardy in MN
 - excellent N scavenger
 - provides cover in early spring when growth resumes

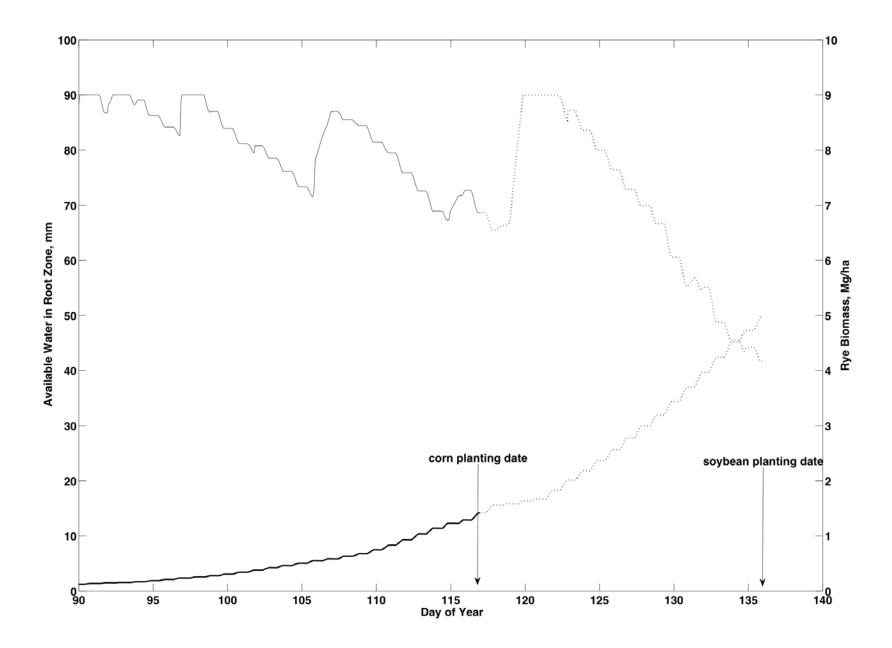
Kaisi and Helmers. 2008. Iowa State Extension.

Zumwinkle M. 2008. MDA.


Projects

- 1. Modeling water use and biomass production
 - John Baker
- 2. Aerially seeding winter rye
 - Melissa Wilson, John Baker, and Deborah Allan
- 3. Paired watershed study to measure sediment and nutrient loading
 - Adam Herges, Erik Krueger, and John Baker
- 4. Rye as a catch/cover crop in continuous corn silage on a large dairy farm
 - Erik Krueger and John Baker


eling the Water Use and Biomass Production of Winter ect 1.


Biophysical model: •developed •tested against MN field data •applied across the corn belt using weather data from ag weather networks

Baker, J.M., and T.J. Griffis. 2009. Evaluating the potential of winter cover crops in corn-soybean systems for sustainable co-production of food and fuel. *Agric. Forest Meteorol.* 149:2120-2132.

Winter Rye Field, Spring 2006 Rosemount, MN

Project 1 Conclusions

It appears possible to produce substantial biomass with winter rye in corn-soybean rotations across much of the corn belt, *if* there is sufficient N.

Growing season length is a serious constraint in the northern portion (MN,WI) of the region

Potential rye production is much lower in continuous corn.

Water depletion is a serious problem in some years, but may become a more manageable risk as longterm weather forecasts improve.

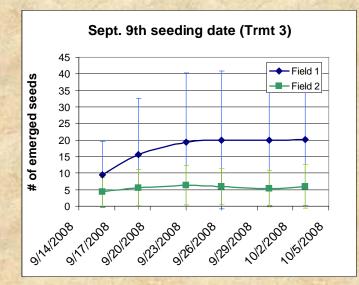
Project 2. Aerially Seeding Winter Rye

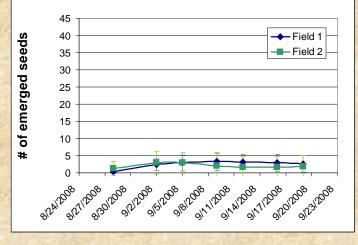
- What factors affect successful establishment?
 Focusing on seeding rye into grain and silage corn
- Initial Study 2008/2009
 - Large scale plots located on cooperator farms in southeast MN
 - Looked at seeding date
 - Measured:

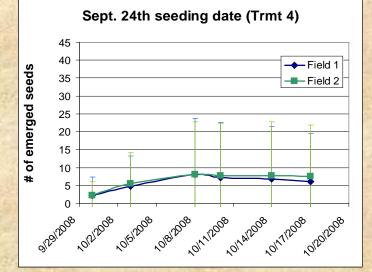
• Emergence, stand establishment, soil moisture, soil organic matter, total C and N, soil water nitrate, etc

- 2008-2009 Cover crop season
 - Aerial seeding
 - Seeded on three dates: Aug 18, Sept 9, Sept 24
 - MDA seeded Aug 18th
 - Seeded 100 acres in 40 minutes
 - » A lot less time than drilling 100 acres!

- 2008-2009 Cover crop season
 - Aerial seeding
 - Seeded at 75 lb/A
 - Estimated there should be ~36 seeds per square foot
 - In reality, there were on average 3.02 (± 2.97) seeds per square foot (8.2 lb/A)

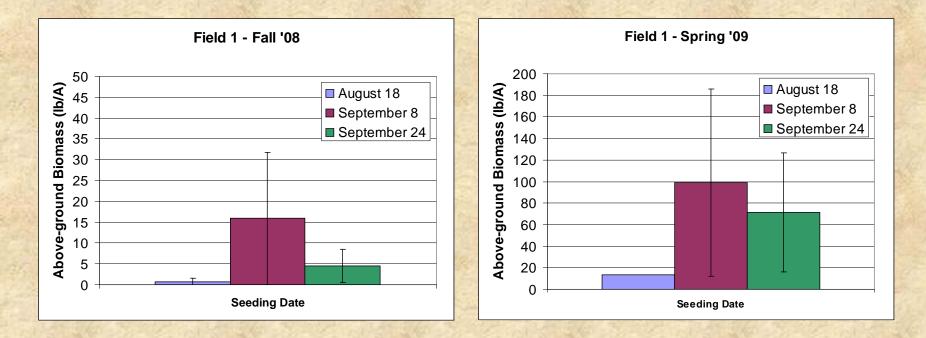



90% of seed caught in canopy?


 Emergence Counts

 Counted emergence 2 times a week
 Results varied drastically

Aug. 18th seeding date (Trmt 2)



- Rye stand counts Fall
 - Field 1:
 - Aug. 18th seeding date: 0.6 plants per ft²
 - Sept. 9th seeding date: 6.7 plants per ft²
 - Sept. 24th seeding date: 4.3 plants per ft²
 - Field 2:
 - Only 1 plot had rye it averaged 11.7 plants per ft²
 - What happened?

Above-ground rye biomass

Google Maps. 2008.

MDA cooperator's farms

Zumwinkle M. 2008. MDA.

Aerially seeded winter rye MDA cooperator's farms

Zumwinkle M. 2008. MDA.

MDA cooperator's farms

Zumwinkle M. 2008. MDA.

2008/2009 Conclusions

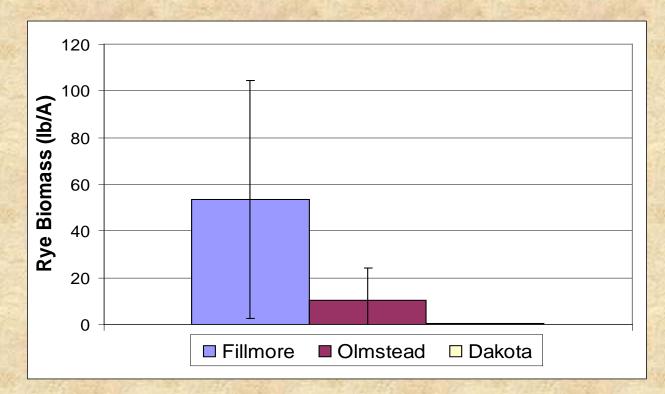
- Rye cover crops can be successful in Minnesota
 - As shown by the MDA
- More research is needed
 - Why does rye successfully establish in one field, but not another?
 - Soil organic matter content? Surface crusting? Insects?
 - What type of spreader is best for aerial seeding?
 - How much seed is caught up in corn canopy? At what rate should rye be seeded to overcome this?

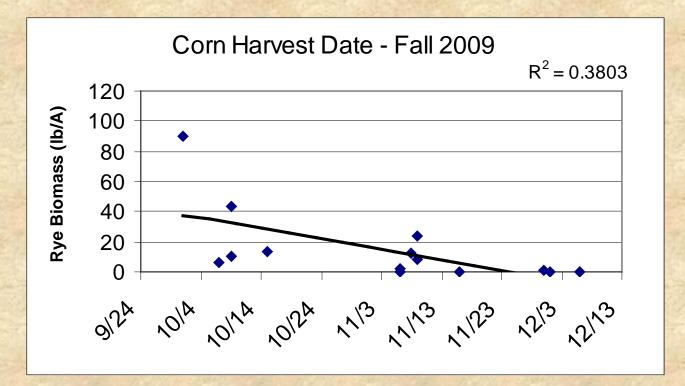
- 2009/2010 Cover crop season
 - New approach
 - Used a different helicopter service with bucket spreader

2009/2010 Cover crop season

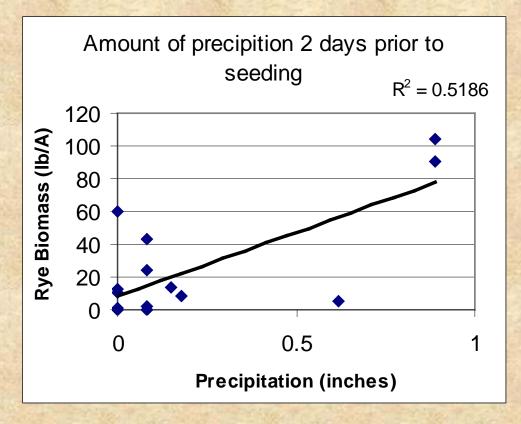
New approach

- Aerially seeded multiple sites in Fillmore, Olmstead and Dakota Counties
 - 7 sites in Fillmore on August 17th
 - 11 sites in Olmstead on August 28th
 - 1 site in Dakota on September 9th
- Measured multiple variables that potentially affect rye growth
 - Soil moisture, nutrient content, organic matter content and residue cover
 - Will determine which variables are most likely to predict rye growth


- Preliminary Results
 - Seeding rate
 - Again, seeded at 75 lb/A
 - On average had 33 Ib/A on the ground at sites in Olmstead and Dakota Counties
 - Better than previous year but still needs more work



Rye growth 1 week after seeding in Fillmore County


- Preliminary Results
 - Above-ground rye biomass
 - Collected early December

- Preliminary Results
 - Correlations

- Preliminary Results
 - Correlations

Preliminary Results

- Correlations

- Other variables seem to have little to no correlation
 - Soil organic matter
 - Soil pH
 - Inorganic nitrogen
 - Total nitrogen
 - Total carbon
 - Extractable K

Future plans

- Germination and Growth Experiments

- Soil moisture at the soil surface
- Rainfall pattern and distribution variations
- Mechanical Aspects of Seeding
 - How much seed actually gets caught in the corn canopy?
 - Will some of the seed caught in the canopy eventually fall to the ground?

Project 3. Winter rye BMPs to reduce sediment and nutrient loading of Minnesota surface waters

- Funded by the Minnesota Clean Water Act

Research Team

- Adam Herges, GRA, UM Dept. of Soil, Water, and Climate, (<u>herge010@umn.edu</u>, 612-625-1798)
- Erik Krueger, GRA, UM Dept. of Soil, Water, and Climate
- John Baker, USDA-ARS and UM Dept. of Soil, Water, and Climate
- Gary Feyereisen, USDA-ARS and UM Dept. of Soil, Water, and Climate
- Paul Porter, UM Dept. of Agronomy
- Mark Zumwinkle, MN Dept. of Agriculture

Research Objectives:

• To evaluate surface runoff from 2 paired watersheds (in corn silage and corn grain systems)

• Use rainfall simulations (plot scale) to evaluate grazed vs. harvestable winter rye for BMPs.

Aerial photograph representing the paired watersheds at the two SE MN locations

The letter D represents the control (field left fallow over winter) and the letter C represents the treatment (winter rye seeded in fall of growing season)

Lewiston, MN location – corn silage field

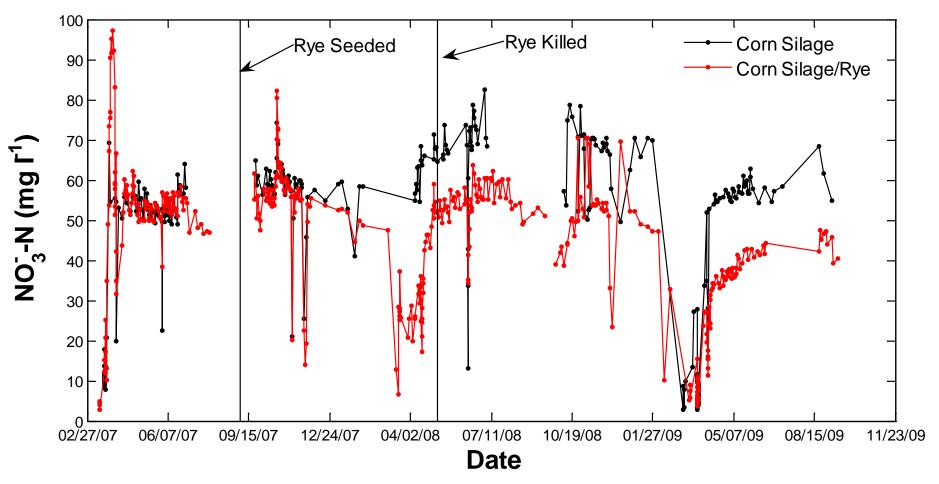
Constructing the plywood barrier for edge-offield monitoring, October 2009. Installing H-flume into position at the lowest point on the field edge, January 2010.

Plainview, MN location – corn grain field

Constructing platform for ISCO equipment: 4230 Bubbler Flow Meter and 3700 Portable Samplers, November 2009.

Completed 3 foot plywood wall, November 2009. (Took 1 day to complete with 6 people)

Project 4. Rye in continuous corn silage on large dairy farm


- Concerns with Large Dairies
 - Continuous corn silage
 - Short growing season, OM removal, erosion potential
 - Large volume of manure
 - Nutrient buildup and transport

Objectives:

- Determine the effectiveness of the rye at reducing N and P losses
- Monitor the influence of rye cover crop on soil erosion
- Address the effects of the rye cover crop on subsequent corn yield
- Estimate N balance by measuring N applied, removed in biomass, leached, and changes in soil N content

NO₃ Concentration in Subsurface Drainage

- NO₃ concentration was similar in 2007 prior to rye seeding
- A decrease in NO₃ concentration of 23% was observed in 2008
- Rye was not seeded in fall 2008, but a residual effect of the single year of cover cropping was observed in 2009

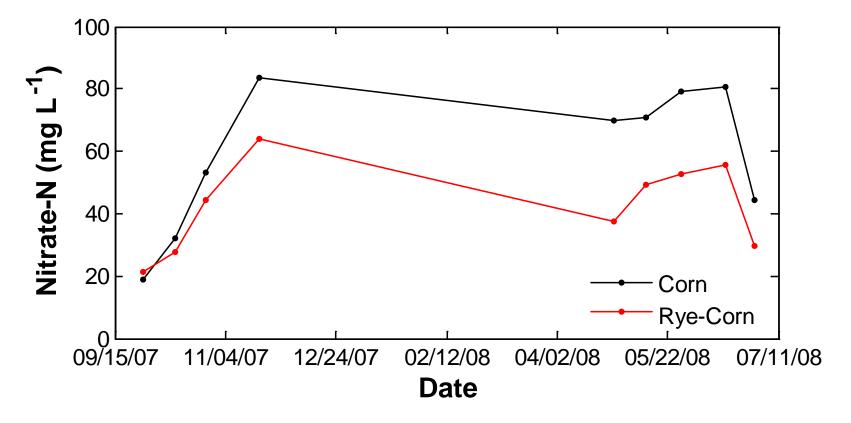
Biomass Production and Nitrogen Capture													
	2006-2007					2007	-2008	<u></u>	2008-2009				
	Biomass Mg ha ⁻¹		N Captured Kg ha ⁻¹		Biomass Mg ha ⁻¹		N Captured Kg ha ⁻¹		Biomass Mg ha ⁻¹		N Captured Kg ha ⁻¹		
and the second													
Trt.	Rye	Corn	Rye	Corn	Rye	Corn [‡]	Rye	Corn [‡]	Rye	Corn	Rye	Corn	
C-CS [†]		10.6		107.1		17.1		175.5		21.2	1	214.1	
T-R/CS		11.1	·	112.2	2.28	14.4	79.1	143.4		20.9		211.1	
[†] Control Corn Silage (C-CS), Treatment Rye/Corn Silage (T-R/CS)													
[†] Rye seeded 9/4/2007 and killed 5/6/2008													
[‡] Corn seeded 5/16/2008 after fallow and 5/22/2008 after rye													

- Corn yield and N capture were similar for 2007 and 2009 when no rye was seeded
- In 2008, N capture improved with cover cropping, but corn yield was suppressed
- Late planting due to wet conditions and poor seedbed preparation after rye may be the cause of the reduced yield

This research demonstrates that cover cropping with winter rye can <u>reduced NO₃</u> in subsurface drainage but may also <u>reduce corn yield</u>

Plot Scale Double Cropping

Designed as a companion project to the on farm research Allows for replication and multiple management schemes


Four treatments and four reps

- EC: Corn Planted Early May
- LC: Corn Planted Mid May
- ER: Corn after Rye, Mid May
- LR: Corn after Rye, Early June

Photos Taken 6/23/2009 Objectives similar to on farm experiment, but possibility of rye forage production also examined

NO₃ Concentration in Subsurface Drainage

- Suction cup water samplers were used to determine NO₃ concentration in subsurface drainage
- Leachate data are limited, but a decrease in NO₃ concentration of 37% was observed in one year of data

	Biomass Production and Nitrogen Capture											
	Yield (Mg ha ⁻¹)			N Captured (Kg ha ⁻¹)			Yield (Mg ha ⁻¹)			N Captured (Kg ha ⁻¹)		
-	Rye	Corn	Total	Rye	Corn	Total	Rye	Corn	Total	Rye [†]	Corn [†]	Total [†]
EC		18.0 ^a	18.0 ^a	2 <u></u>	241 ^a	241 ^a		17.5 ^a	17.5 ^a	· ···· 3	235	235
LC		16.8 ^a	16.8 ^a		231 ^a	231 ^a		17.7 ^a	17.7 ^a		243	243
ER	0.15 ^a	15.3 ^a	15.5 ^{ab}	6.82 ^a	212 ^{ab}	219 ^a	1.43 ^a	13.7 ^b	15.1 ^a	63.4	190	253
LR	1.39 ^b	12.5 ^b	13.9 ^b	31.3 ^b	181 ^b	212 ^a	2.77 ^b	14.0 ^b	16.8 ^a	76.0	203	279
Same letter within column indicates no significant difference ($p < 0.05$)												

*N capture estimated using forage quality data from 2007

- Late planting and low rye yield in 2007 resulted in both reduced total biomass production and N capture in the double crop treatments
- In 2008, N capture was increased in the double crop treatments, but biomass yield was greater in monocrop corn silage
- Soil data indicate that soil moisture and N depletion likely cause decreasedcorn yield

As with the on farm study, this research demonstrates that cover cropping with winter rye can <u>reduce NO₃</u> in subsurface drainage but may also <u>reduce both corn yield and total biomass production</u>