Cover Crops for Corn Production - Nitrogen Value?

Alan Sundermeier
Wood County Extension Educator

Dr. Robert Mullen
Nutrient Management/Soil Fertility Specialist

The Ohio State University

NW Research Station, Ohio

- In the spring of 2006 we interseeded wheat with red clover at a seeding rate of 10 lbs/acre
- *We established a good clover stand (unlike the previous year) and allowed it to grow until late fall

NW Research Station. Ohio



Red Clover

NW Research Station, Ohio

- In the spring, corn was planted in late April with 30 pounds of starter (no starter on the 0 N checks)
- **Corn was sidedressed with UAN to reach total N rates of 80 and 160 pounds per acre

Soil Nitrate Levels

Presidedress soil nitrate test levels as affected by cover crop

Cover crop	Nitrate level (ppm)
No cover	7.25
Clover no-till	7.75
Clover till	7.75

**Cover crop did not affect PSNT (measured in early June)

Main effect of cover crop on corn yield

Cover crop	Corn yield (bu/acre)	
No cover	98 a	
Clover no-till	116 b	
Clover till	124 c	

-means followed by different letters are statistical significant at the 0.05 probability level

*Cover crop did affect corn productivity

Main effect of nitrogen rate on corn yield

N rate (lb/acre)	Corn yield (bu/acre)
0		72 a
80	G	129 b
160		137 c

⁻means followed by different letters are statistical significant at the 0.05 probability level

***Corn was responsive to N**

2008 NW Research Station Red Clover, N Rate, No-till

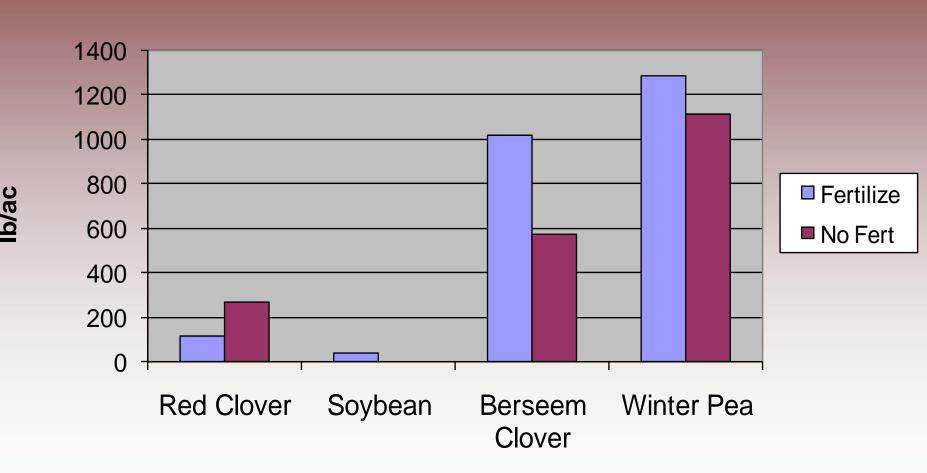
Cover Crop	Sidedress N Rat	te Corn Yield
No clover	0	28.9 A
Clover	0	30.2 A
No clover	80	84.4 B
Clover	80	95.4 C
No clover	160	115.5 D
Clover	160	125.1 E
	LSD (0.10)	9.4

NW Corn Yields 2008

Main effect of cover crop on corn yield

Cover crop	Corn yield (bu/acre)	
No cover	76.3	
Clover no-till	83.6	
Clover till	85.8	

⁻means followed by different letters are statistical significant at the 0.05 probability level


*Cover crop did affect corn productivity

Biomass

NW Branch 10-13-08

Western Ohio Research Station

- Red clover was drilled after wheat harvest (mid-July)
- Clover was allowed to grow all winter and the stand was terminated in the spring with tillage or glyphosate in late April
- *Corn was planted in early May
- ****Corn was sidedressed in late May**

Main effect of cover crop on corn yield

Cover crop	Corn yield (bu/acre)	
No cover	178 ab	
Clover no-till	187 a	
Clover till	353 b	

-means followed by different letters are statistical significant at the 0.1 probability level

*Cover crop did affect corn productivity

Main effect of nitrogen rate on corn yield

N rate (lb/	acre) Corn yiel	d (bu/acre)
0	1	61 a
80	1	68 a
160		90 c

⁻means followed by different letters are statistical significant at the 0.05 probability level

***Corn was responsive to N**

Summary

- Cover crop did not affect corn yield compared to the no cover treatment
- *Neither a rotational effect or N benefit could be identified
 - *There was tremendous variability in this study that did affect our ability to pick out differences

Western Research Station-Watters

- Three different cover crops after wheat (field pea, annual ryegrass, and soybean)
- **Field pea was planted on two dates August 23 and September 26
- **Annual ryegrass was planted on September 26
- ****Soybean was planted on August 23**

Western Research Station-Watters

- Cover crops were terminated in the spring with herbicide
- **Three N rates 0, 75, and 150 lb N/acre

Simple effects of cover crop and N rate on corn yield

No-Till Conference

18

East Badger Farm, Wooster, OH

- Planted two cover crops (hairy vetch and annual ryegrass) after wheat harvest in early August
- **Terminated the cover crops in late April with glyphosate
- * Planted corn in early May
- *Applied 30 pounds of N with the planter
- **Six different sidedress N rates (0, 40, 80, 120, 160, and 200 lb/acre injected UAN at V7-8)

East Badger Farm

- Annual ryegrass established well, but the hairy vetch did not do well at all
- ***It was there but very sparse**

Main effect of cover crop on corn yield

Cover crop	Corn yield (bu/acre)	
No cover	185 a	
Hairy vetch	176 a	
Annual ryegra	173 a	

-means followed by different letters are statistical significant at the 0.1 probability level

*No impact of cover crop on yield

Main effect of nitrogen rate on corn yield

N rate (lb/acre) Corn yield (bu/acre)		
0		157
40		169
80	53	183
120		180
160		195
200		184

Conclusions

*Leguminous cover crops may hold some value after wheat harvest

Variability in success of plant stand

*Rotational vs Nitrogen benefit

***Economic Return on inputs**

Agronomic Updates

**Crop Observation & Recommendation Network

***Electronic Newsletter**

*http://corn.osu.edu

